Advertisement

Neuroscience and Behavioral Physiology

, Volume 49, Issue 1, pp 115–120 | Cite as

Diagnosis and Treatment of Cognitive Impairments in Attention Deficit Syndrome in Adults

  • L. S. ChutkoEmail author
  • S. Yu. Surushkina
  • E. A. Yakovenko
  • Yu. D. Kropotov
  • A. V. Sergeev
Article
  • 4 Downloads

Objectives. To clarify cognitive impairments in adults with attention deficit hyperactivity syndrome (ADHD) and to assess the efficacy of the formulation Memoplant in the treatment of this pathology. Materials and Methods. The results of clinical, psychological, and electroencephalographic studies of 40 patients aged 18–45 years with ADHD are presented. From recruitment into the study, all patients received Memoplant at a daily dose of 240 mg for eight weeks. Results and conclusions. Adult patients with ADHD had both subjective and objective impairments to memory and attention. EEG results suggested that patients showed dysfunction of the frontothalamic regulatory system and deficit of nonspecific activation by the reticular formation. Courses of Memoplant were followed by clinical improvements in 24 patients (60.0%). Repeat psychological and neurophysiological studies demonstrated decreases in attention deficit and improvements in memory measures.

Keywords

attention deficit hyperactivity disorder Memoplant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Polanczyk, M. S. de Lima, B. L. Horta, J. Biederman, and L. A. Rohde, “The worldwide prevalence of ADHD: a systematic review and metaregression analysis,” Am. J. Psychiatry, 164, No. 6, 942–948 (2007), doi:  https://doi.org/10.1176/ajp.2007.164.6.942.CrossRefPubMedGoogle Scholar
  2. 2.
    P. Rao and M. Place, “Prevalence of ADHD in four general adult outpatient clinics in North East England,” Prog. Neurol. Psychiatry, 15, No. 5, 7–10 (2011), doi:  https://doi.org/10.1002/pnp.211.CrossRefGoogle Scholar
  3. 3.
    E. G. Willcutt, “The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review,” Neurotherapeutics, 9, No. 3, 490–499 (2012), doi:  https://doi.org/10.1007/s13311-012-0135-8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    J. Fayyad, N. A. Sampson, I. Hwang, et al., “The descriptive epidemiology of DSM-IV adult ADHD in the World Health Organization World Mental Health Surveys,” Atten. Defic. Hyperact. Disord., 19, 1–19 (2016), doi:  https://doi.org/10.1007/s12402-016-0208-3.CrossRefGoogle Scholar
  5. 5.
    I. T. Nureev, M. V. Zlokazova, and V. I. Tsirkin, “Experience in the use of the ASRS V1.1 questionnaire scales for the diagnosis of attention deficit hyperactivity disorder in adults,” Vestn. Pomorsk. Univ. Ser. Giziol. Psychol.-Pedagog. Nauk., 4, 98–102 (2007).Google Scholar
  6. 6.
    T. Archer, M. Oscar-Berman, and K. Blum, “Epigenetics in developmental disorder: ADHD and endophenotypes,” J. Genet. Syndr. Gene Ther., 2, No. 1, 100–104 (2011), doi:  https://doi.org/10.4172/2157-7412.1000104.CrossRefGoogle Scholar
  7. 7.
    E. Murray, R. Pearson, M. Fernandes, I. S. Santos, F. C. Barros, C. G. Victora, A. Stein, and A. Matijasevich, “Are fetal growth impairment and preterm birth causally related to child attention problems and ADHD? Evidence from a comparison between high-income and middle-income cohorts,” J. Epidemiol. Community Health, 70, No. 7, 704–709 (2016), doi:  https://doi.org/10.1136/jech-2015-206222.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    O. R. Nogovitsina and E. V. Levitina, “Effects of perinatal risk factors on the formation of attention deficit hyperactivity disorder in children,” Ross. Vestn. Perinatol. Pediatr., 1, 64–65 (2012).Google Scholar
  9. 9.
    S. V. Faraone and S. A. Khan, “Candidate gene studies of attention-deficit/hyperactivity disorder,” J. Clin. Psychiatry, 67, No. 8, 13–20 (2006).PubMedGoogle Scholar
  10. 10.
    B. N. Kim, J. W. Kim, and H. Kang, “Regional differences in cerebral perfusion associated with the alpha-2A-adrenergic receptor genotypes in attention deficit hyperactivity disorder,” J. Psychiatr. Neurosci., 35, No. 5, 330–336 (2010), doi:  https://doi.org/10.1503/jpn.090168.CrossRefGoogle Scholar
  11. 11.
    K. Ding, J. Yang, G. P. Reynolds, B. Chen, J. Shao, R. Liu, Q. Qian, H. Liu, R. Yang, J. Wen, and C. Kang, “DAT1 methylation is associated with methylphenidate response on oppositional and hyperactive-impulsive symptoms in children and adolescents with ADHD,” World J. Biol. Psychiatry, 27, 1–9 (2016), doi:  https://doi.org/10.1080/15622975.2016.1224928. CrossRefGoogle Scholar
  12. 12.
    R. M. Alderson, L. J. Kasper, K. L. Hudec, and C. H. Patros, “Attention-deficit/hyperactivity disorder (ADHD) and working memory in adults: a meta-analytic review,” Neuropsychology, 27, No. 3, 287–302 (2013), doi:  https://doi.org/10.1037/a0032371.CrossRefPubMedGoogle Scholar
  13. 13.
    R. N. Elisa, E. Balaguer-Ballester, and B. A. Parris, “Inattention, working memory, and goal neglect in a community sample,” Front. Psychol., 7, 1428 (2016), doi:  https://doi.org/10.3389/fpsyg.2016.01428.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    K. Murphy, R. Barkley, and T. Bush, “Young adults with attention deficit hyperactivity disorder: subtype differences in comorbidity, educational, and clinical history,” J. Nerv. Ment. Dis., 190, 147–157 (2002), doi:  https://doi.org/10.1097/00005053-200203000-00003.CrossRefPubMedGoogle Scholar
  15. 15.
    R. C. Kessler, L. A. Adler, M. J. Gruber, C. A. Sarawate, T. Spencer, and D. L. Van Brunt, “Validity of the World Health Organization Adult ADHD Self-Report Scale (ASRS) screener in a representative sample of health plan members,” Int. J. Met. Psych. Res., 16, No. 2, 52–65 (2007), doi:  https://doi.org/10.1002/mpr.208.CrossRefGoogle Scholar
  16. 16.
    D. E. Broadbent, P. F. Cooper, P. FitzGerald, and K. R. Parkes, “The Cognitive Failures Questionnaire (CFQ) and its correlates,” Br. J. Clin. Psychol., 21, 1–16 (1982), doi:  https://doi.org/10.1111/j.2044-8260.1982.tb01421.x. CrossRefPubMedGoogle Scholar
  17. 17.
    Y. Luo, “Contemporary neuroscience meets traditional medicine – towards understanding Ginkgo biloba neuroprotection,” Curr. Top. Nutraceut. Res., 1, 49–58 (2003).Google Scholar
  18. 18.
    F. Tchantchou, P. N. Lacor, Z. Cao, et al., “Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons,” J. Alzheimers Dis., 18, No. 4, 787–798 (2009).CrossRefGoogle Scholar
  19. 19.
    K. Schwanz, L. Palm, and S. Brallier, “Attention problems and hyperactivity as predictors of college grade point average,” J. Atten. Disord., 11, 368–373 (2007), doi:  https://doi.org/10.1177/1087054707305155.CrossRefPubMedGoogle Scholar
  20. 20.
    S. Blase, A. Gilbert, A. Anastopoulos, et al., “Self-reported ADHD and adjustment in college: cross-sectional and longitudinal findings,” J. Atten. Disord., 3, No. 13, 297–309 (2009), doi:  https://doi.org/10.1177/1087054709334446.
  21. 21.
    R. G. Voigt, S. K. Katusic, R. C. Colligan, J. M. Killian, A. L. Weaver, and W. J. Barbaresi, “Academic achievement in adults with a history of childhood attention-deficit/hyperactivity disorder: A population-based prospective study,” J. Dev. Behav. Pediatr., 23, 1 (2016), doi:  https://doi.org/10.1097/dbp.0000000000000358. CrossRefGoogle Scholar
  22. 22.
    R. A. Barkley and M. Fischer, “Predicting impairment in major life activities and occupational functioning in hyperactive children as adults: self-reported executive function (EF) deficits versus EF tests,” Dev. Neuropsychol., 36, 137–161 (2011), doi:  https://doi.org/10.1080/87565641.2010.549877.CrossRefPubMedGoogle Scholar
  23. 23.
    V. A. Grane, T. Endestad, A. F. Pinto, and A. K. Solbakk, “Attentional control and subjective executive function in treatment-naive adults with attention deficit hyperactivity disorder,” PLoS One, 9, No. 12, 115227 (2014), doi:  https://doi.org/10.1371/journal.pone.0115227.CrossRefGoogle Scholar
  24. 24.
    T. Yoshitake, S. Yoshitake, and J. Kehr, “The Ginkgo biloba extract EGb 761(R) and its main constituent flavonoids and ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex,” Br. J. Pharmacol., 159, No. 3, 659–668 (2010), doi:  https://doi.org/10.1111/j.1476-5381.2009.00580.x.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    A. N. Boiko, A. V. Lebedeva, I. A. Shchukin, et al., “Potential of medication-based correction of moderate cognitive disorder,” Zh. Nevrol. Psikhiat., 2, 28–32 (2013).Google Scholar
  26. 26.
    I. V. Litvinenko, K. M. Naumov, and M. M. Odinak, “Correction of cognitive and noncognitive symptoms of cerebrovascular disease,” Zh. Nevrol. Psikhiat., 4, 35–40 (2014).Google Scholar
  27. 27.
    L. S. Chutko, S. Yu. Surushkina, A. V. Rozhkova, I. S. Nikishena, and E. A. Yakovenko, “Asthenic symptoms complex in patients with emotional burnout syndrome,” Zh. Nevrol. Psikhiat., No. 11, 22–26 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. S. Chutko
    • 1
    Email author
  • S. Yu. Surushkina
    • 1
  • E. A. Yakovenko
    • 1
  • Yu. D. Kropotov
    • 1
  • A. V. Sergeev
    • 1
  1. 1.Bekhtereva Institute of the Human BrainRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations