Advertisement

Neuroscience and Behavioral Physiology

, Volume 49, Issue 1, pp 109–114 | Cite as

Immunohistochemical Characteristics of Neurons in the Substantia Nigra of the Human Brain

  • D. E. Korzhevskii
  • I. P. Grigor’ev
  • E. G. Sukhorukova
  • V. V. Gusel’nikovaEmail author
Article
  • 7 Downloads

Objectives. To identify the cytochemical chromosomes of structurally unaltered neurons in the substantia nigra of the human brain using a wide spectrum of immunocytochemical markers, some of which (glutamate decarboxylase 65, PGP 9.5, unphosphorylated neurofilament proteins, α-tubulin) have not previously been used in studies of dopaminergic neurons in humans. Materials and methods. The study used fragments of human midbrain (17 men and women aged 28–78 years) obtained from the archive of the Department of General and Special Morphology, Institute of Experimental Medicine. Studies were performed using classical neurohistology and immunocytochemistry methods using antibodies to 15 different proteins. Results. Most neurons in the substantia nigra were characterized by decreased expression of general neuronal markers – nuclear protein NeuN, protein PGP 9.5, and neuron-specific enolase. The substantia nigra was not found to contain GABAergic (GAD65-immunopositive) neurons. The dorsal part of this area contained occasional cholinergic neurons not containing neuromelanin. Calcium-binding proteins calbindin and calretinin were absent from most nigral cells, though the dorsal part of the substantia nigra contained occasional calbindin-containing neurons, while the ventral part contained occasional calretinin-containing neurons. Nitric oxide synthase was present in both the neuropil and neuron bodies in the substantia nigra. Conclusions. The data obtained here provide evidence of the unique cytochemical properties of nigral neurons, which may be associated with their increased predisposition to degeneration.

Keywords

substantia nigra immunohistochemistry neuronal nuclear protein NeuN neuron-specific enolase PGP 9.5 cholinergic neurons calbindin calretinin nitric oxide synthase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Otellin and E. B. Arushanyan, The Nigrostriatal System, Meditsina, Moscow (1989).Google Scholar
  2. 2.
    V. L. Golubev, Ya. I. Levin, and A. M. Vein, Parkinson’s Disease and Parkinsonism Syndrome, Medpress, Moscow (1999).Google Scholar
  3. 3.
    D. N. Voronkov, R. M. Khudoerkov, and E. L. Dovedova, “Changes in neuroglial interactions in nigrostriatal structures of the brain in models of dysfunction of the dopaminergic system,” Zh. Nevrol. Psikhiat., 113, No. 7, 47–51 (2013).Google Scholar
  4. 4.
    V. G. Khaindrava, E. A. Kozina, V. G. Kucheryanu, G. N. Kryzhanovskii, V. S. Kudrin, P. A. Klodt, E. V. Bocharov, K. S. Raevskii, and M. V. Ugryumov, “Modeling of the preclinical and early stages of Parkinson’s disease,” Zh. Nevrol. Psikhiat., 110, No. 7, 41–47 (2010).Google Scholar
  5. 5.
    E. I. Gusev and A. B. Gekht (eds.), Motor Diseases: Medical and Social Aspects, Academy for Advanced Training and Professional Retraining for Educational Workers Press, Moscow (2010).Google Scholar
  6. 6.
    P. P. Michel, E. C. Hirsch, and S. Hunot, “Understanding dopaminergic cell death pathways in Parkinson disease,” Neuron, 90, No. 4, 675–691 (2016), doi:  https://doi.org/10.1016/j.neuron.2016.03.038.CrossRefPubMedGoogle Scholar
  7. 7.
    E. G. Sukhorukova, O. S. Alekseeva, and D. E. Korzhevsky, “Catecholaminergic neurons of mammalian brain and neuromelanin,” J. Evol. Biochem. Physiol., 50, No. 5, 383–391 (2014), doi:  https://doi.org/10.1134/S0022093014050020.CrossRefGoogle Scholar
  8. 8.
    F. A. Zucca, E. Basso, F. A. Cupaioli, E. Ferrari, D. Sulzer, L. Casella, and L. Zecca, “Neuromelanin of the human substantia nigra: an update,” Neurotox. Res., 25, No. 1, 13–23 (2014), doi:  https://doi.org/10.1007/s12640-013-9435-y.CrossRefPubMedGoogle Scholar
  9. 9.
    I. P. Grigoriev, E. G. Sukhorukova, E. A. Kolos, and D. E. Korzhevskii, “Neuromelanin in substantia nigra neurons lacking tyrosine hydroxylase,” Neurosci. Behav. Physiol., 43, No. 4, 461–463 (2013), doi:  https://doi.org/10.1007/s11055-013-9755-7.CrossRefGoogle Scholar
  10. 10.
    P. Damier, E. C. Hirsch, Y. Agid, and A. M. Graybiel, “The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease,” Brain, 122, No. 8, 1437–1448 (1999), doi:  https://doi.org/10.1093/brain/122.8.1437.CrossRefPubMedGoogle Scholar
  11. 11.
    A. Parent, M. Fortin, P. Y. Cote, and F. Cicchetti, “Calcium-binding proteins in primate basal ganglia,” Neurosci. Res., 25, No. 4, 309–334 (1996),  https://doi.org/10.1016/0168-0102(96)01065-6.CrossRefPubMedGoogle Scholar
  12. 12.
    A. I. Blazejewska, S. T. Schwarz, A. Pitiot, M. C. Stephenson, J. Lowe, N. Bajaj, R. W. Bowtell, D. P. Auer, and P. A. Gowland, “Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7T MRI,” Neurology, 81, No. 6, 534–540 (2013), doi:  https://doi.org/10.1212/WNL.0b013e31829e6fd2.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    A. Anderegg, J. F. Poulin, and R. Awatramani, “Molecular heterogeneity of midbrain dopaminergic neurons – Moving toward single cell resolution,” FEBS Lett., 589, No. 24, Pt A, 3714–3726 (2015), doi:  https://doi.org/10.1016/j.febslet.2015.10.022.
  14. 14.
    D. E. Korzhevskii, E. G. Sukhorukova, O. V. Kirik, and I. P. Grigorev, “Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde,” Eur. J. Histochem., 59, No. 3, 25–30 (2015), doi:  https://doi.org/10.4081/ejh.2015.2530.CrossRefGoogle Scholar
  15. 15.
    I. P. Grigor’ev and D. E. Korzhevskii, “Marinesco bodies – intranuclear inclusions in dopaminergic neurons,” Med. Akad. Zh., 15, No. 2, 28–34 (2015).Google Scholar
  16. 16.
    V. V. Gusel’nikova and D. E. Korzhevskiy, “NeuN as a neuronal nuclear antigen and neuron differentiation marker,” Acta Naturae, 7, No. 2, 42–47 (2015).PubMedPubMedCentralGoogle Scholar
  17. 17.
    V. N. Sal’kov, R. M. Khudoerkov, D. N. Voronkov, and N. S. Noss, “Morphometric indicators of structural heterogeneity of the substantia nigra of the brains of elderly men and women,” Arkh. Patol., 77, No. 4, 51–54 (2015), doi:  https://doi.org/10.17116/patol201577451-54.CrossRefGoogle Scholar
  18. 18.
    R. Martinez-Murillo, R. Villalba, M. I. Montero-Caballero, and J. Rodrigo, “Cholinergic somata and terminals in the rat substantia nigra: an immunocytochemical study with optical and electron microscopic techniques,” J. Comp. Neurol., 281, No. 3, 397–415 (1989), doi:  https://doi.org/10.1002/cne.902810306.CrossRefPubMedGoogle Scholar
  19. 19.
    N. S. Kolomeets and N. A. Uranova, “Synaptic contacts in schizophrenia: studies using immunocytochemical identification of dopaminergic neurons,” Zh. Nevrol. Psikhiat., 97, No. 12, 39–43 (1997).Google Scholar
  20. 20.
    I. P. Grigorev, M. A. Shklyaeva, O. V. Kirik, E. G. Gilerovich, and D. E. Korzhevskii, “Distribution of alpha-tubulin in rat forebrain structures,” Neurosci. Behav. Physiol., 44, No. 1, 1–4 (2014), doi:  https://doi.org/10.1007/s11055-013-9864-3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. E. Korzhevskii
    • 1
  • I. P. Grigor’ev
    • 1
  • E. G. Sukhorukova
    • 1
  • V. V. Gusel’nikova
    • 1
    Email author
  1. 1.Institute of Experimental MedicineSt. PetersburgRussia

Personalised recommendations