Advertisement

Neuroscience and Behavioral Physiology

, Volume 49, Issue 1, pp 89–94 | Cite as

Morphological Changes and Characteristics of the Expression of Serine Racemase in the Hippocampus of Rats Exposed to Multiple Negative Gravitational Overloads

  • D. S. Mednikov
  • A. V. Smirnov
  • M. V. Shmidt
  • I. N. Tyurenkov
  • D. V. Kurkin
  • D. A. Bakulin
  • E. V. Volotova
Article
  • 3 Downloads

Objectives. To study the morphometric parameters and levels of expression of serine racemase in the hippocampus of rats repeatedly exposed to gravitational overloads in the caudocranial direction (–9 Gz). Materials and methods. Rat aged 12 months were subjected to 9-g forces for 5 min twice a day with 12-h intervals for 28 days (group 2, gravity group, n = 10); controls were not exposed to hypergravitation (group 1, controls, n = 10). Morphometric mean areas of the nuclei and perikarya of pyramidal cells were determined, along with the specific number of neurons with signs of damage, the relative areas of pyramidal neuron and neuroglial cell perikarya. Immunohistochemical studies addressed the level of expression of serine racemase in all zones of the hippocampus. Results. Signs of impaired blood supply in the microcirculatory component were seen in the form of spongiosis, thickening of capillary walls, and diapedesis of erythrocytes. All hippocampal zones in experimental rats showed sharp increases in the numbers of pyramidal neurons with signs of damage. Atrophic changes consisting of decreases in the mean and relative areas of neuron perikarya were identified. Immunohistochemical studies showed increased expression of serine racemase in field CA1, along with translocation of immunoreactive material into the processes of pyramidal neurons. Fields CA3 and CA4 showed a tendency to decreases in serine racemase content. Conclusions. Prolonged gravitational exposure in the caudocranial direction led to the appearance of signs of severe damage in all fields of the rat hippocampus, combined with increased expression and accumulation of serine racemase in the dendrites of pyramidal neurons in field CA1, which may be evidence that excitotoxicity is involved in the mechanisms of secondary damage in this zone.

Keywords

hippocampus gravitational exposure serine racemase rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Gaevyi, L. E. Nazarova, L. M. Gaevaya, and Yu. A. Ogurtsov, “Reproduction of experimental stroke in experimental studies,” Patol. Fiziol. Eksper. Ter., No. 2, 7–8 ( 2000).Google Scholar
  2. 2.
    L. M. Makarova, “Neuroprotective action of Mexidol in total cerebral ischemia (the question of the advisability of using this agent in gravitational overloading),” Byul. Eksper. Biol, No. 1, 48–55 ( 2006).Google Scholar
  3. 3.
    A. V. Smirnov, N. V. Grigor’eva, M. R. Ekova, et al., “Morphological changes and characteristics of the expression of serine racemase in the hippocampus of rats exposed to combined stress,” Morfologiya, 150, No. 6, 20–25 (2017).Google Scholar
  4. 4.
    A. V. Smirnov, M. V. Shmidt, D. S. Mednikov, et al., “Structural changes in the hippocampus in rats in an experimental model of hypertensive encephalopathy considering the expression of heat shock proteins,” Vestn. Volgograd. Gos. Univ., 60, No. 4, 90–95 (2016).Google Scholar
  5. 5.
    A. S. Shtemberg, V. S. Kudrin, P. M. Klodt, V. B. Narkevich, and A. S. Bazyan, “The effects of antiorthostatic hypodynamia and overload on discriminant learning and monoamine metabolism in brain structures in mice,” Neirokhimiya, 6, No. 4, 291–298 (2012).Google Scholar
  6. 6.
    L. Balan, V. N. Foltyn, M. Zehl, E. Dumin, E. Dikopoltsev, D. Knoh, Y. Ohno, A. Kihara, O. N. Jensen, I. S. Radzishevsky, and H. Wolosker, “Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane,” Proc. Natl. Acad. Sci. USA, 106, No. 18, 7589–7594 (2009).CrossRefGoogle Scholar
  7. 7.
    A. A. Fedotov, S. A. Akulov, and A. S. Akulova, “Alterations in cardiovascular system under artificially simulated microgravity: preliminary study,” Conf. Proc. IEEE Eng. Med. Biol.Soc, 204–206 (2016).Google Scholar
  8. 8.
    G. Kolodney, E. Dumin, H. Safory, D. Rosenberg, H. Mori, I. Radzishevsky, and H. Wolosker, “Nuclear compartmentalization of serine racemase regulates D-serine production: Implications for N-methyl-D-aspartate (NMDA) receptor activation,” J. Biol. Chem., 290, No. 52, 31,037–31,050 (2015).CrossRefGoogle Scholar
  9. 9.
    A. K. Mustafa, A. S. Ahmad, E. Zeynalov, et al., “Serine racemase deletion protects against cerebral ischemia and excitotoxicity,” J. Neuroscience, 30, No. 4, 1413–1416 (2010).CrossRefGoogle Scholar
  10. 10.
    Y. Nishida, S. Maruyama, I. Shouji, T. Kemuriyama, A. Tashiro, H. Ohta, K. Hagisawa, M. Hiruma, and H. Yokoe, “Effects and biological limitations of +Gz acceleration on the autonomic functions-related circulation in rats,” J. Physiol. Sci., 66, No. 6, 447–462 (2016).CrossRefGoogle Scholar
  11. 11.
    G. Paxinos and C. A. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, Toronto (1982).Google Scholar
  12. 12.
    C. B. Rueda, I. Llorente-Folch, J. Traba, et al., “Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+-activated mitochondrial transporters (CaMCs),” Biochim. Biophys. Acta, 1857, No. 8, 1158–1166 (2016).CrossRefGoogle Scholar
  13. 13.
    D. Tomassoni, R. Avola, M. A. Di Tullio, and F. Amenta, “Increased expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats,” Clin. Exp. Hypertens., 26, No. 4, 335–350 (2004).CrossRefGoogle Scholar
  14. 14.
    C. C. Tran, G. Ossard, X. Etienne, A. Serra, M. Berthelot, J. C. Jouanin, and C. Y. Guézennec, “Brief exposure to -2 Gz reduces cerebral blood flow velocity during subsequent +2 Gz acceleration,” J. Gravit. Physiol., 11, No. 2, 81–82 (2004).Google Scholar
  15. 15.
    T. Yoshimura and M. Goto, “D-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases,” FEBS J., 275, No. 14, 3527–3537 (2008).CrossRefGoogle Scholar
  16. 16.
    Y. N. Zhao, J. M. Li, C. X. Chen, P. Zhang, and S. X. Li, “Hypertension-mediated enhancement of JNK activation in association with endoplasmic reticulum stress in rat model hippocampus with cerebral ischemia-reperfusion,” Genet. Mol. Res., 14, No. 3, 10980–10990 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. S. Mednikov
    • 1
  • A. V. Smirnov
    • 1
    • 3
  • M. V. Shmidt
    • 1
    • 3
  • I. N. Tyurenkov
    • 2
  • D. V. Kurkin
    • 2
  • D. A. Bakulin
    • 2
  • E. V. Volotova
    • 2
  1. 1.Department of Pathological Anatomy, Faculty of Advanced Medical StudiesVolgograd State Medical UniversityVolgogradRussia
  2. 2.Department of Pharmacology and Biopharmacy, Faculty of Advanced Medical StudiesVolgograd State Medical UniversityVolgogradRussia
  3. 3.Laboratory for Immunocytochemistry and CancerogenesisVolgograd Medical Scientific CenterVolgogradRussia

Personalised recommendations