Advertisement

Neuroscience and Behavioral Physiology

, Volume 49, Issue 1, pp 20–24 | Cite as

Association of Chronotype, Road Traffic Accidents, and Polymorphisms in Genes Linked with the Biological Clock and the Dopaminergic System

  • A. O. Taranov
  • A. N. PuchkovaEmail author
  • P. A. Slominskii
  • T. V. Tupitsyna
  • V. V. Dementienko
  • V. B. Dorokhov
Article
  • 5 Downloads

Objective. To study the association between single-nucleotide polymorphisms (SNP) of the RORA (rs1159814), CLOCK (rs12649507), PER3 (rs2640909), NPSR1 (rs324981), NPAS2 (rs4851377), DRD3 (rs6280), SLC6A3 (rs6347), and DBH (rs1611125) genes, chronotype parameters, and road traffic accident (RTA) driver statistics. Materials and methods. The study included 303 drivers of Moscow inter-city buses working rolling shifts. The study addressed associations between genotyping results for SNP and the Munich Chronotype Questionnaire (MCTQ) and the Shortened Sleep-Wake Pattern Assessment Questionnaire (SWPAQ), and official RTA statistics. Results and conclusions. The cohort was dominated by the mixed chronotype, with a tendency to go to bed late and able to get up early; there was a marked shift between sleep patterns between working days and rest days. The SNP of the PER3 gene showed an association with parameters of morning activity. The SNP of the CLOCK gene was associated with a change in the pattern and the risk of causing RTA, while the minor alleles of the NPSR1 and SLC6A3 genes were associated with a later chronotype and an increase in RTA risk. It is suggested that these polymorphism may be among the genetic factors linking the chronotype to the ability to work.

Keywords

chronotype drivers accident rate single-nucleotide polymorphisms biological clock 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Kovalzon, Basic Somnology: Physiology and Neurochemistry of the “Sleep–Waking” Cycle, BINOM. Lab Znanii, Moscow (2011).Google Scholar
  2. 2.
    D. J. Dijk and M. von Schantz, “Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators,” J. Biol. Rhythms, 20, No. 4, 279–290 (2005),  https://doi.org/10.1177/0748730405278292.CrossRefPubMedGoogle Scholar
  3. 3.
    V. M. Koval’zon and V. B. Dorokhov, “The sleep–waking cycle and biorhythms in humans in different patterns of the light and dark periods of the day,” Zdorov. Obraz. XXI Veke, 15, No. 1–4, 151–162 (2013).Google Scholar
  4. 4.
    A. Adan, S. N. Archer, M. P. Hidalgo, L. Di Milia, V. Natale, and C. Randler, “Circadian typology: A comprehensive review,” Chronobiol. Int., 29, No. 9, 1153–1175 (2012),  https://doi.org/10.3109/07420528.2012.719971.CrossRefPubMedGoogle Scholar
  5. 5.
    A. A. Putilov, “Introduction of the tetra-circumplex criterion for comparison of the actual and theoretical structures of the sleep-wake adaptability,” Biol. Rhythm Res., 38, No. 1, 65–84 (2007),  https://doi.org/10.1080/09291010600832453.CrossRefGoogle Scholar
  6. 6.
    V. B. Dorokhov, “Somnology and safety at work,” Zh. Vyssh. Nerv. Deyat., 63, No. 1, 33–47 (2013),  https://doi.org/10.7868/S0044467713010048.CrossRefGoogle Scholar
  7. 7.
    T. Akerstedt, “Altered sleep/wake patterns and mental performance,” Physiol. Behav., 90, No. 2–3, 209–218 (2007),  https://doi.org/10.1016/j.physbeh.2006.09.007.CrossRefPubMedGoogle Scholar
  8. 8.
    A. S. Wagstaff and J.-A. Sigstad Lie, “Shift and night work and long working hours – a systematic review of safety implications,” Scand. J. Work Environ. Health, 37, No. 3, 173–185 (2011), doi:  https://doi.org/10.5271/sjweh.3146.CrossRefPubMedGoogle Scholar
  9. 9.
    A. N. Puchkova and V. B. Dorokhov, “Molecular genetic studies of individual differences in work activity,” Zh. Vyssh. Nerv. Deyat., 65, No. 2, 188–202 (2015),  https://doi.org/10.7868/S0044467715020124.CrossRefGoogle Scholar
  10. 10.
    T. Roenneberg, A. Wirz-Justice, and M. Merrow, “Life between clocks: daily temporal patterns of human chronotypes,” J. Biol. Rhythms, 18, No. 1, 80–90 (2003),  https://doi.org/10.1177/0748730402239679.CrossRefPubMedGoogle Scholar
  11. 11.
    A. A. Putilov, Geometry of Individual Variation in Personality and Sleep-Wake Adaptability, Nova Science Publ. Inc., New York (2010).Google Scholar
  12. 12.
    J. Foret and G. Lantin, “The sleep of train drivers: an example of the effects of irregular work schedules on sleep,” in: The Sleep of Train Drivers: An Example of the Effects of Aspects of Human Efficiency (1972).Google Scholar
  13. 13.
    J. Spada, C. Sander, R. Burkhardt, M. Hantzsch, R. Mergl, M. Scholz, U. Hegerl, and T. Hensch, “Genetic association of objective sleep phenotypes with a functional polymorphism in the neuropeptide S receptor gene,” PLoS One, 9, 98789 (2014),  https://doi.org/10.1371/journal.pone.0098789.CrossRefGoogle Scholar
  14. 14.
    V. V. Gafarov, E. A. Gromova, I. V. Gagulin, D. O. Panov, V. N. Maksimov, and A. V. Gafarova, “Polymorphism of the neuropeptide S receptor gene (NPSR1) and its association with sleep impairment in an open population of men,” Mir Nauk. Kult. Obraz., 54, No. 5, 275–277 (2015).Google Scholar
  15. 15.
    D. A. Ojeda, C. S. Perea, C. L. Nino, R. M. Gutierrez, S. Lopez-Leon, H. Arboleda, A. Camargo, A. Adan, and D. A. Forero, “A novel association of two nonsynonymous polymorphisms in PER2 and PER3 genes with specific diurnal preference subscales,” Neurosci. Lett., 553, 52–56 (2013),  https://doi.org/10.1016/j.neulet.2013.08.016.CrossRefPubMedGoogle Scholar
  16. 16.
    K. V. Allebrandt, M. Teder-Laving, M. Akyol, I. Pichler, B. Muller-Myhsok, P. Pramstaller, M. Merrow, T. Meitinger, A. Metspalu, and T. Roenneberg, “CLOCK gene variants associate with sleep duration in two independent populations,” Biol. Psychiatry, 67, No. 11, 1040–1047 (2010),  https://doi.org/10.1016/j.biopsych.2009.12.026.CrossRefPubMedGoogle Scholar
  17. 17.
    S. Neufang, M. J. Geiger, G. A. Homola, M. Mahr, A. Akhrif, J. Nowak, A. Reif, M. Romanos, J. Deckert, L. Solymosi, and K. Domschke, “Modulation of prefrontal functioning in attention systems by NPSR1 gene variation,” NeuroImage, 114, 199–206 (2015),  https://doi.org/10.1016/j.neuroimage.2015.03.064.CrossRefPubMedGoogle Scholar
  18. 18.
    K. Laas, D. Eensoo, M. Paaver, K.-P. Lesch, A. Reif, and J. Harro, “Further evidence for the association of the NPSR1 gene A/T polymorphism (Asn107Ile) with impulsivity and hyperactivity,” J. Psychopharmacol., 29, No. 8, 878–883 (2015),  https://doi.org/10.1177/0269881115573803.CrossRefPubMedGoogle Scholar
  19. 19.
    T. Ruland, K. Domschke, V. Schutte, M. Zavorotnyy, H. Kugel, S. Notzon, N. Vennewald, P. Ohrmann, V. Arolt, B. Pfleiderer, and P. Zwanzger, “Neuropeptide S receptor gene variation modulates anterior cingulate cortex Glx levels during CCK-4 induced panic,” Eur. Neuropsychopharmacol., 25, No. 10, 1677–1682 (2015),  https://doi.org/10.1016/j.euroneuro.2015.07.011.CrossRefPubMedGoogle Scholar
  20. 20.
    A. K. Tiwari, C. C. Zai, G. Sajeev, T. Arenovich, D. J. Muller, and J. L. Kennedy, “Analysis of 34 candidate genes in bupropion and placebo remission,” Int. J. Neuropsychopharmacol., 16, No. 4, 771–781 (2013),  https://doi.org/10.1017/S1461145712000843.CrossRefPubMedGoogle Scholar
  21. 21.
    D. Sullivan, J. K. Pinsonneault, A. C. Papp, H. Zhu, S. Lemeshow, D. C. Mash, and W. Sadee, “Dopamine transporter DAT and receptor DRD2 variants affect risk of lethal cocaine abuse: a gene-gene-environment interaction,” Transl. Psychiatry, 3, No. 1, 222 (2013),  https://doi.org/10.1038/tp.2012.146.CrossRefGoogle Scholar
  22. 22.
    J. K. Pinsonneault, D. D. Han, K. E. Burdick, M. Kataki, A. Bertolino, A. K. Malhotra, H. H. Gu, and W. Sadee, “Dopamine transporter gene variant affecting expression in human brain is associated with bipolar disorder,” Neuropsychopharmacology, 36, No. 8, 1644–1655 (2011),  https://doi.org/10.1038/npp.2011.45.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. O. Taranov
    • 1
  • A. N. Puchkova
    • 1
    • 2
    Email author
  • P. A. Slominskii
    • 3
  • T. V. Tupitsyna
    • 3
  • V. V. Dementienko
    • 4
  • V. B. Dorokhov
    • 1
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Pushkin State Institute of the Russian LanguageMoscowRussia
  3. 3.Institute of Molecular GeneticsRussian Academy of Medical SciencesMoscowRussia
  4. 4.Kotelnikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations