Advertisement

Neuroscience and Behavioral Physiology

, Volume 49, Issue 1, pp 1–6 | Cite as

Functional Neurochemistry of the Sleep–Waking Cycle in the Pathogenesis of Neurological Diseases

  • V. M. Koval’zonEmail author
Article
  • 8 Downloads

This review addresses contemporary experimental data on the functioning of the main neurotransmitter systems of the brain involved in arousal reactions and the maintenance of waking.

Keywords

sleep sleep–waking cycle neurotransmitters sleep and waking impairments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Kovalzon, Basic Somnology. Physiology and Neurochemistry of the Sleep–Waking Cycle, Binom, Knowledge Laboratory, Moscow (2011).Google Scholar
  2. 2.
    V. M. Koval’zon, “The brain and sleep – from neurons to molecules,” Zh. Vyssh. Nerv. Deyat., 62, No. 1, 48–60 (2013), doi: https://doi.org/10.7868/S0044467713010073.CrossRefGoogle Scholar
  3. 3.
    V. M. Koval’zon, “Neurophysiology and neurochemistry of sleep,” in: Somnology and Sleep Medicine: Selected Lectures, Ya. I. Levin and M. G. Poluektov (eds.), Medforum, Moscow (2013).Google Scholar
  4. 4.
    R. S. Liblau, A. Vassalli, A. Seifinejad, and M. Tafti, “Hypocretin (orexin) biology and the pathophysiology of narcolepsy with cataplexy,” Lancet Neurol., 14, 318–328 (2015), www.thelancet.com/neurology, acc. Feb. 13, 2017.
  5. 5.
    V. M. Koval’zon, “Neurophysiology and neurochemistry of sleep,” in: Somnology and Sleep Medicine. National Handbook in Memory of A. M. Vein and Ya. I. Levin, M. G. Poluektov (ed), Medforum, Moscow (2016).Google Scholar
  6. 6.
    N. Tsujino, and T. Sakurai, “Role of orexin in modulating arousal, feeding, and motivation,” Front. Behav. Neurosci., 7, 28 (2013), doi:https://doi.org/10.3389/fnbeh.2013.0 0 028.Google Scholar
  7. 7.
    C. Richter, I. G. Woods, and A. F. Schier, “Neuropeptidergic control of sleep and wakefulness,” Annu. Rev. Neurosci., 37, 503–531 (2014), doi: https://doi.org/10.1146/annurev-neuro-062111-150447.CrossRefPubMedGoogle Scholar
  8. 8.
    X.-B. Gao and G. Hermes, “Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals,” Front. Syst. Neurosci., 9, 142 (2015), doi: https://doi.org/10.3389/fnsys.2015.00142.
  9. 9.
    P. Torterolo, P. Lagos, and J. M. Monti, “Melanin-concentrating hormone – a new sleep factor?” Front. Neurosci., 2, 14 (2011), doi:https://doi.org/10.3389/fneur.2011.0 0 014.Google Scholar
  10. 10.
    R. R. Konadhode, D. Pelluru, and P. J. Shiromani, “Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep,” Front. Syst. Neurosci., 8, 244 (2015), doi: https://doi.org/10.3389/fnsys.2014.00244.
  11. 11.
    V. M. Koval’zon and I. M. Zavalko, “The sleep–waking cycle and Parkinson’s disease,” Neirokhimiya, 30, No. 3, 193–206 (2013), doi: https://doi.org/10.7868/S1027813313030060.CrossRefGoogle Scholar
  12. 12.
    V. M. Koval’zon, “The role of the orexinergic system of the brain in regulating waking and sleep,” Effektiv. Farmakoter. Nevrol. Psikhiatr., Special Issue “Sleep and its disorders-4,” 19, 6–14 (2016).Google Scholar
  13. 13.
    S.-B. Li, W. J. Giardino, and L. de Lecea, “Hypocretins and arousal,” Curr. Top. Behav. Neurosci. (2016), doi: https://doi.org/10.1007/7854_2016_58.
  14. 14.
    M. M. Lim, and R. Szymusiak, “Neurobiology of arousal and sleep: Updates and insights into neurological disorders,” Curr. Sleep Med. Rep., 1, 91–100 (2015), doi: https://doi.org/10.1007/s40675-015-0013-0.CrossRefGoogle Scholar
  15. 15.
    V. M. Koval’zon and K. N. Strygin, “Neurochemical mechanisms of the regulation of sleep and waking: the role of histamine receptor blockers in the treatment of insomnia,” Effektiv. Farmakoter., Nevrol. Psikhiatr., Spec. Iss., Sleep and Its Disorders, 12, 8–15 (2013).Google Scholar
  16. 16.
    R. H. Williams, M. J. S. Chee, D. Kroeger, L. L. Ferrari, E. Maratos-Flier, T. E. Scammell, and E. Arrigoni, “Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal,” J. Neurosci., 4, No. 17, 6023–6029 (2014), doi: https://doi.org/10.1523/JNEUROSCI.4838-13.2014.CrossRefGoogle Scholar
  17. 17.
    H. L. Haas and J.-S. Lin, “Waking with the hypothalamus,” Pflügers Arch – Eur. J. Physiol., 463, 31–42 (2012), doi: https://doi.org/10.1007/s00424-011-0996-4.CrossRefGoogle Scholar
  18. 18.
    V. M. Koval’zon and V. V. Dolgikh, “Regulation of the sleep–waking cycle,” Nevrol. Zh., 21, No. 6, 316–322 (2016), doi: https://doi.org/10.18821/1560-9545-2016-21-6-316-322.CrossRefGoogle Scholar
  19. 19.
    V. M. Koval’zon, I. M. Zavalko, and V. B. Dorokhov, “Parkinson’s disease, the brain dopaminergic system, and the regulation of sleep,” in: Neurodegenerative Diseases: from the Genome to the Whole Body, M. V. Ugryumov (ed.), Nauchnyi Mir, Moscow (2014), Vol. 1.Google Scholar
  20. 20.
    R. E. Brown, R. Basheer, J. T. McKenna, et al., “Control of sleep and wakefulness,” Physiol. Rev., 92, 1087–1187 (2012), doi: https://doi.org/10.1152/physrev.00032.2. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    M. D. Schwartz and T. S. Kilduff, “The neurobiology of sleep and wakefulness,” Psychiatr. Clin. North. Am., 38, No. 4, 615–644 (2015), doi: https://doi.org/10.1016/j.psc.2015.07.002.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    E. Garcia-Rill, B. Luster, S. Mahaffey, V. Bisagno, and F. J. Urbano, “Pedunculopontine arousal system physiology – Implications for insomnia,” Sleep Sci., 8, 92–99 (2015), doi: https://doi.org/10.1016/j.slsci.2015.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    T. Kanda, N. Tsujino, E. Kuramoto, Y. Koyama, E. A. Susaki, S. Chikahisa, and H. Funato, “Sleep as a biological problem: an overview of frontiers in sleep research,” J. Physiol. Sci., 66, 1–13 (2016), doi: https://doi.org/10.1007/s12576-015-0414-3. CrossRefPubMedGoogle Scholar
  24. 24.
    M. Xu, S. Chung, S. Zhang, P. Zhong, C. Ma, W.-C. Chang, B. Weissbourd, N. Sakai, L. Luo, S. Nishino, and Y. Dan, “Basal forebrain circuit for sleep-wake control,” Nat. Neurosci., 18, 1641–1647 (2015), doi: https://doi.org/10.1038/nn.4143.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    S. Kaur, N. P. Pedersen, S. Yokota, E. E. Hur, P. M. Fuller, M. Lazarus, N. L. Chamberlin, and C. B. Saper, “Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal,” J. Neurosci., 33, No. 18, 7627–7640 (2013), doi: https://doi.org/10.1523/JNEUROSCI.0173-13.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    F. Weber and Y. Dan, “Circuit-based interrogation of sleep control,” Nature, 538, 1–59 (2016), doi: https://doi.org/10.1038/nature197735. CrossRefGoogle Scholar
  27. 27.
    L. Krone, L. Frase, H. Piosczyk, P. Selhausen, S. Zittel, F. Jahn, M. Kuhn, B. Feige, F. Mainberger, S. Kloppel, D. Riemann, K. Spiegelhalder, C. Baglioni, A. Sterr, and C. Nissen, “Top-down control of arousal and sleep: Fundamentals and clinical implications,” Sleep Med. Rev., 31, 17–24 (2017), doi: https://doi.org/10.1016/j.smrv.2015.12.005.CrossRefPubMedGoogle Scholar
  28. 28.
    V. M. Koval’zon, “The role of the histaminergic system of the brain in regulating the sleep–waking cycle,” Fiziol. Cheloveka, 39, No. 6, 13–23 (2013), doi: https://doi.org/10.7868/S0131164613060088.CrossRefPubMedGoogle Scholar
  29. 29.
    F. S. Luyster, P. J. Strollo, P. C. Zee, and J. K. Walsh, “Sleep: a health imperative,” Sleep, 35, No. 6, 727–734 (2012), doi: https://doi.org/10.5665/sleep.1846.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Severtsov Institute of Problems in Ecology and Evolution, Russian Academy of SciencesMoscowRussia

Personalised recommendations