Advertisement

Neuroscience and Behavioral Physiology

, Volume 48, Issue 8, pp 1014–1018 | Cite as

Activity Patterns in Neurons in the Retrosplenial Area of the Cortex in Operant Food-Procuring Behavior in Rats of Different Ages

  • A. G. GorkinEmail author
  • E. A. Kuzina
  • N. P. Ivlieva
  • O. A. Solov’eva
  • Yu. I. Aleksandrov
Article
  • 14 Downloads

Neuron spike activity was recorded in the retrosplenial area of the cortex during execution of acquired cyclic operant food-procuring behavior (COFPB) in adult (8–12 months) and elderly (20–27 months) Long-Evans rats. As compared with adult rats, elderly animals showed a significant decrease in the proportion of neurons specialized for COFPB. The normalized discharge frequency of all neurons in elderly animals during execution of basic food-procuring acts was significantly greater than that in adults. Elderly rats showed significantly fewer pairs of acts with significant differences in discharge frequency than adults, indicating that neuron activity on execution of COFPB was more uniform. These data indicate that in old age, learning involves less “extension” of existing experience due to formation of new neuronal specializations than in earlier stages of an individual’s life and that the internal system structure of the newly formed behavior is more “homogeneous.”

Keywords

aging rats individual neuron activity neuron specialization behavioral act system retrosplenial cortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov, Yu. I., Gorkin, A. G., Sozinov, A. A., Svarnik, O. E., Kuzina, E. A., and Gavrilov, V. V., Neuronal Mediation of Learning and Memory. Cognitive Studies: Collected Works, Velichkovskk, B. M., Rubtsova, V. V., and Ushakov, D. V. (eds.), Moscow State University of Psychology and Education Press, Moscow (2014), pp. 130–169.Google Scholar
  2. Aleksandrov, Yu. I., Psychophysiological Significance of the Activity of Central and Peripheral Neurons in Behavior, Nauka, Moscow (1989).Google Scholar
  3. Alexandrov, Yu. I., Grinchenko, Yu. V., Laukka, S., Järvilehto, T., Maz, V. N., and Svetlaev, L. A.,” Acute effect of ethanol on the pattern of behavioral specialization of neurons in the limbic cortex of the freely movingrabbit,” Acta Physiol. Scand., 140, 257–268 (1990).CrossRefGoogle Scholar
  4. Barnes, C. A., Suster, M. S., Chen, J., and McNaughton, B. L., “Multistability of cognitive maps in the hippocampus of old rats,” Nature, 388, No. 6639, 272–275 (1997).CrossRefGoogle Scholar
  5. Burke, S. N., Maurer, A. P., Nematollahi, S., Uprety, A., Wallace, J. L., and Barnes, C. A., “Advanced age dissociates dual functions of the perirhinal cortex,” J. Neurosci., 34, No. 2, 467–480 (2014).CrossRefGoogle Scholar
  6. Caetano, M. S., Horst, N. K., Harenberg, L., Liu, B., Arnsten, A. F. T., and Laubach, M., “Lost in transition: aging-related changes in executive control by the medial prefrontal cortex,” J. Neurosci., 32, No. 11, 3765–3777 (2012).CrossRefGoogle Scholar
  7. Gavrilov, V. V., Grinchenko, Yu. V., and Alexandrov, Yu. I., “Behaviorally specialized limbic cortex neurons in rats and rabbits: comparative study,” Int. J. Psychophysiol., 30, 130 (1998).CrossRefGoogle Scholar
  8. Gorkin, A. G. and Shevchenko, D. G., “Stability of the behavioral specialization of neurons,” Neurosci. Behav. Physiol., 21, No. 3, 222–229 (1991).CrossRefGoogle Scholar
  9. Huijbers, W., Vannini, P., Sperling, R. A., Pennartz, C. M., Cabeza, R., and Daselaar, S. M., “Explaining the encoding/retrieval flip: Memoryrelated deactivations and activations in the posteromedial cortex,” Neuropsychologia, 50, No. 14, 3764–3774 (2012).CrossRefGoogle Scholar
  10. Kopytova, F. V., Krivitskaia, G. N., Mednikova, Iu. S., “The morphofunctional characteristics of the neurons in the sensorimotor cortex of old rabbits during the trace assimilation of rhythm,” Zh. Vyssh. Nerv. Deyat. im. I. P. Pavlova, 42, No. 4, 710–719 (1992).Google Scholar
  11. Kopytova, F. V., Mednikova, Yu. S., and Popova, E. N., “Developmental structural-functional characteristics of rabbit hippocampal neurons on formation of temporal associations,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 53, No. 5, 604–612 (2003).Google Scholar
  12. Kuzina, E. A., Gorkin, A. G., and Aleksandrov, Yu. I., “Activity of neurons in the rat retrosplenial cortex at the early and late stages of memory consolidation,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 65, No. 2, 248–253 (2015).Google Scholar
  13. Miller, A. M. P., Vedder, L. C., Law, L. M., and Smith, D. M., “Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition” Front. Hum. Neurosc., 8, 586 (2014), doi  https://doi.org/10.3389/fnhum.2017.00586.CrossRefGoogle Scholar
  14. Sala-Llonch, R., Bartres-Faz, D., and Junque, C., “Reorganization of brain networks in aging: a review of functional connectivity studies,” Front. Psychol., 6, 663 (2015), doi  https://doi.org/10.3389/fpsyg.2015.00663. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Samson, R. D., Venkatesh, A., Patel, D. H., Lipa, P., and Barnes, C. A., “Enhanced performance of aged rats in contingency degradation and instrumental extinction tasks,” Behav. Neurosci., 128, No. 2, 122–133 (2014).CrossRefGoogle Scholar
  16. Schoenbaum, G., Setlow, B., Saddoris, M. P., and Gallagher, M., “Encoding changes in orbitofrontal cortex in reversal-impaired aged rats,” J. Neurophysiol., 95, No. 3, 1509–1517 (2006).CrossRefGoogle Scholar
  17. Tabuchi, E., Furusawa, A. A., Hori, E., Umeno, K., Ono T, and Nishijo, H., “Neural correlates to action and rewards in the rat posterior cingulate cortex,” Neuroreport, 16, No. 9, 949–953 (2005).CrossRefGoogle Scholar
  18. Wilson, L. A., Ikonen, S., Gureviciene L, McMahan, R. W., Gallagher, M., Eichenbaum, H., and Tanila, H., “Cognitive aging and the hippocampus: how old rats represent new environments,” J. Neurosci., 24, No. 15, 3870–3878 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. G. Gorkin
    • 1
    Email author
  • E. A. Kuzina
    • 1
  • N. P. Ivlieva
    • 3
  • O. A. Solov’eva
    • 1
    • 2
  • Yu. I. Aleksandrov
    • 1
    • 3
  1. 1.Shvyrkov Psychophysiology LaboratoryInstitute of Psychology, Russian Academy of SciencesMoscowRussia
  2. 2.Functional Neurochemistry LaboratoryAnokhin Research Institute of Normal PhysiologyMoscowRussia
  3. 3.Department of PsychophysiologyState Academic University of the Humanitarian SciencesMoscowRussia

Personalised recommendations