Neuroscience and Behavioral Physiology

, Volume 48, Issue 6, pp 779–783 | Cite as

Postnatal Morphogenesis of Purkinje Cells in the Rat Cerebellum

  • S. M. Zimatkin
  • O. A. Karnyushko
  • O. B. Ostrovskaya

Electron microscopic and histochemical methods were used to obtain a quantitative assessment of the development of organelles in Purkinje cells in the cerebellum of mongrel rats (n = 36) during the postnatal period of ontogeny (days 2, 7, 15, and 45). The nucleus:cytoplasm ratio decreased, while nucleolar area increased, the size and length of mitochondria increased, the quantity of membrane-bound ribosomes and the length of endoplasmic reticular channels increased, the number and sizes of lysosomes increased, and the relative area occupied by lysosomes on sections of the cytoplasm also increased.


cerebellum Purkinje cells ultrastructure morphometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. P. Budko, N. G. Gladkovich, and E. V. Maksimova, Neuroontogenesis, Nauka, Moscow (1985).Google Scholar
  2. 2.
    O. A. Karnyushko and S. M. Zimatkin, “Impairments to the morphogenesis of the cerebellar cortex in the offspring of rats with experimental cholestasis and their correction,” Vestsi. NAN Belarusi. Ser. Med. Navuk., No. 3, 95–101 (2015).Google Scholar
  3. 3.
    S. N. Olenev, The Developing Brain, Nauka, Leningrad (1978).Google Scholar
  4. 4.
    J. Altman, “Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer,” J. Comp. Neurol., 145, No. 4, 399–463 (1972).CrossRefPubMedGoogle Scholar
  5. 5.
    J. Altman and A. T. Winfree, “Postnatal development of the cerebellar cortex in the rat. V. Spatial organization of Purkinje cell perikarya,” J. Comp. Neurol., 171, No. 1, 1–16 (1977).CrossRefPubMedGoogle Scholar
  6. 6.
    P. R. Andjus, L. Zhu, R. Cesa, et al., “A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum,” Neuroscience, 121, No. 3, 563–572 (2003).CrossRefPubMedGoogle Scholar
  7. 7.
    M. A. Asari, M. S. Abdullan, and Z. I. Ismail, “Histomorphometric study on the effect of low dose deltamethrin on the developing cerebellar cortex,” Turk. J. Med. Sci., 40, and No. 6, 943–948 (2010).Google Scholar
  8. 8.
    O. J. Castejon, “Correlative microscopy of Purkinje cells,” Biocell, 35, No. 3, 1–29 (2011).Google Scholar
  9. 9.
    E. Lewandowska, T. Stępień, T. Wierzba-Bobrowicz, et al., “Alcohol-induced changes in the developing cerebellum. Ultrastruc tural and quantitative analysis of neurons in the cerebellar cortex,” Folia Neuropathol., 50, No. 4, 397–406 (2012).CrossRefPubMedGoogle Scholar
  10. 10.
    G. Millonig, “Advantages of a phosphate buffer or OsO4 solutions in fixation,” J. Appl. Physics., 32, 1637–1643 (1961).Google Scholar
  11. 11.
    G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, London (2007), 6th ed.Google Scholar
  12. 12.
    E. S. Reynolds, “The use of lead citrate at high pH as an electron opaque stain in electron microscopy,” J. Cell Biol., 17, 208–212 (1963).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. M. Zimatkin
    • 1
  • O. A. Karnyushko
    • 1
  • O. B. Ostrovskaya
    • 1
  1. 1.Department of Histology, Cytology, and EmbryologyGrodno State Medical UniversityGrodnoBelarus

Personalised recommendations