Advertisement

Neuroscience and Behavioral Physiology

, Volume 48, Issue 6, pp 711–720 | Cite as

Vestibular Prosthetics: Concepts, Approaches, Results

  • I. V. Orlov
  • Yu. K. Stolbkov
  • Yu. P. Gerasimenko
Article
  • 35 Downloads

In contrast to hearing prosthetization, where the technology has been in development for more than 30 years, the challenge of vestibular prosthetization has been researched for no more than 15 years. However, the involvement of the vestibular system in supporting the normal functioning of the visual, motor, and other body systems defines its decisive contribution to spatial orientation in humans and animals. Damage to the vestibular apparatus (labyrinth) leads to serious impairment to posture control, gaze stabilization, spatial orientation, and psychological status, i.e., a person’s overall quality of life is sharply degraded. Animal studies have developed techniques for the prosthetization of the semicircular canals, which perceive angular acceleration and control eye movements in dynamic situations. New approaches based on replacement of the lost natural afferent spike activity in the vestibular nerve by electrical stimulation via a multichannel vestibular prosthesis have been successfully introduced into clinical practice.

Keywords

vestibular prosthesis electrical stimulation neurostimulation semicircular canals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Aschan and J. Stahle, “Nystagmus in Ménière’s disease during attacks: A nystagmographical study,” Acta Oto-Laryngol., 47, No. 2, 189–201 (1957).CrossRefGoogle Scholar
  2. 2.
    C. A. Buchman, J. Joy, A. Hodges, et al., “Vestibular effects of cochlear implantation,” Laryngoscope, 114, No. 10, Pt. 2, Suppl. 103, 1–22 (2004).Google Scholar
  3. 3.
    M. A. Charalambos, P. Yiannis, and G. Julius, “Bio-inspired micro fluidic angular-rate sensor for vestibular prostheses,” Sensors (Basel), 14, No. 7, 13173–13185 (2014).CrossRefGoogle Scholar
  4. 4.
    B. Cohen, J.-L. Suzuki, and M. B. Bender, “Eye movements from semicircular canal nerve stimulation in the cat,” Ann. Otol. Rhinol. Laryngol., 73, 153–169 (1964).CrossRefPubMedGoogle Scholar
  5. 5.
    C. Dai, G. Y. Fridman, B. Chiang, et al., “Cross axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head mounted multichannel vestibular prosthesis,” Exp. Brain Res., 210, No. 3–4, 595–606 (2011).Google Scholar
  6. 6.
    C. Dai, G. Y. Fridman, and C. C. Della Santina, “Effects of vestibular prosthesis electrode implantation and stimulation on hearing in rhesus monkeys,” Hear. Res., 277, 204–210 (2011).CrossRefPubMedGoogle Scholar
  7. 7.
    N. S. Davidovics, G. Y. Fridman, B. Chiang, and C. C. Della Santina, “Effects of biphasic current pulse frequency, amplitude, duration and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve,” IEEE Trans. Neural. Syst. Rehabil. Eng., 19, No. 1, 84–94 (2011).CrossRefPubMedGoogle Scholar
  8. 8.
    N. S. Davidovics, G. Y. Fridman, and C. C. Della Santina, “Comodulation of stimulus rate and current from elevated baselines expands head motion encoding range of the vestibular prosthesis,” Exp. Brain Res., 218, No. 3, 389–400 (2012).CrossRefPubMedGoogle Scholar
  9. 9.
    C. C. Della Santina, A. A. Migliaccio, R. Hayden, et al., “Current and future management of bilateral loss of vestibular sensation – An update on the Johns Hopkins Multichannel Vestibular Prosthesis Project,” Cochlear Implants Int., 11, Supplement 2, 2–11 (2010).Google Scholar
  10. 10.
    C. C. Della Santina, A. A. Migliaccio, and A. H. Patel, “A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-D vestibular sensation,” IEEE Trans. Biomed. Eng., 54, 1016–1030 (2007).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    C. C. Della Santina, V. Potyagaylo, A. A. Migliaccio, et al., “Orientation of human semicircular canals measured by three dimensional multiplanar CT reconstruction,” J. Assoc. Res. Otolaryngol., 6, No. 3, 191–206 (2005).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    G. Y. Fridman and C. C. Della Santina, “Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency,” Anat. Rec. (Hoboken), 295, No. 11, 2010–2029 (2012).CrossRefGoogle Scholar
  13. 13.
    G. Y. Fridman and C. C. Della Santina, “Safe direct current stimulation to expand capabilities of neural prostheses,” IEEE Trans. Neural Syst. Rehabil. Eng., 21, No. 2, 319–328 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    G. Y. Fridman and C. C. Della Santina, “Safe direct current stimulator 2: concept and design,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 3126–3129 (2013).Google Scholar
  15. 15.
    J. S. Golub, L. Ling, K. Nie, et al., “Prosthetic implantation of the human vestibular system,” Otol. Neurotol., 35, 136–147 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    W. Gong and D. M. Merfeld, “Prototype neural semicircular canal prosthesis using patterned electrical stimulation,” Ann. Biomed. Eng., 28, No. 5, 572–581 (2000).CrossRefPubMedGoogle Scholar
  17. 17.
    W. Gong and D. M. Merfeld, “System design and performance of a unilateral horizontal semicircular canal prosthesis,” IEEE Trans. Biomed. Eng., 49, No. 2, 175–181 (2002).CrossRefPubMedGoogle Scholar
  18. 18.
    N. Guinand, M. Pijnenburg, M. Janssen, and H. Kingma, “Visual acuity while walking and oscillopsia severity in healthy subjects and patients with unilateral and bilateral vestibular function loss,” Arch. Otolaryngol. Head Neck Surg., 138, 301 (2012).CrossRefPubMedGoogle Scholar
  19. 19.
    N. Guinand, R. van de Berg, S. Cavuscens, et al., “Vestibular implants: 8 years of experience with electrical stimulation of the vestibular nerve in 11 patients with bilateral vestibular loss,” ORL J. Otorhinolaryngol. Relat. Spec., 77, No. 4, 227–240 (2015).CrossRefPubMedGoogle Scholar
  20. 20.
    J.-P. Guyot, A. Gay, M. I. Kos, and M. Pelizzone, “Ethical, anatomical and physiological issues in developing vestibular implants for human use,” J. Vestib. Res., 22, 3–9 (2012).PubMedGoogle Scholar
  21. 21.
    J. P. Guyot, A. Perez Fornos, N. Guinand, et al., “Vestibular assistance systems: promises and challenges,” J. Neurol., 263, No. 1, 30–35 (2016).CrossRefPubMedCentralGoogle Scholar
  22. 22.
    J. P. Guyot, A. Sigrist, M. Pelizzone, and M. I. Kos, “Adaptation to steady-state electrical stimulation of the vestibular system in humans,” Ann. Otol. Rhinol. Laryngol., 120, 143–149 (2011).CrossRefPubMedGoogle Scholar
  23. 23.
    K. N. Hageman, Z. K. Kalayjian, F. Tejada, et al., “A CMOS neural interface for a multichannel vestibular prosthesis,” IEEE Trans. Biomed. Circuits Syst., 10, No. 2, 269–279 (2016).CrossRefPubMedGoogle Scholar
  24. 24.
    R. Hayden, S. Sawyer, E. Frey, et al., “Virtual labyrinth model of vestibular afferent excitation via implanted electrodes – validation and application to design of a multichannel vestibular prosthesis,” Exp. Brain Res., 210, No. 3–4, 623–640 (2011).Google Scholar
  25. 25.
    P. L. Huygen, J. B. Hinderink, P. van den Broek, et al., “The risk of vestibular function loss after intracochlear implantation,” Acta Oto-Laryngol., Suppl. 520, Pt. 2, 270–272 (1995).Google Scholar
  26. 26.
    R. F. Lewis, “Vestibular prostheses investigated in animal models,” ORL J. Otorhinolaryngol. Relat. Spec., 77, No. 4, 219–226 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    C. J. Limb, H. F. Francis, L. R. Lustig, et al., “Benign positional vertigo after cochlear implantation,” Otolaryngol. Head Neck Surg., 132, No. 5, 741–745 (2005).CrossRefPubMedGoogle Scholar
  28. 28.
    D. M. Merfeld, W. Gong, J. Morrissey, et al., “Acclimation to chronic constant-rate peripheral stimulation provided by a vestibular prosthesis,” IEEE Trans. Biomed. Eng., 53, No. 11, 2362–2372 (2006).CrossRefPubMedGoogle Scholar
  29. 29.
    M. Men and J. P. Guyot, “Difficulties faced by patients suffering from a total, bilateral vestibular loss,” ORL J. Otorhinolaryngol. Relat. Spec., 77, No. 4, 241–247 (2015).CrossRefGoogle Scholar
  30. 30.
    A. A. Migliaccio, C. C. Della Santina, J. P. Carey, et al., “The vestibulo-ocular reflex response to head impulses rarely decreases after cochlear implantation,” Otol. Neurotol., 26, No. 4, 655–660 (2005).CrossRefPubMedGoogle Scholar
  31. 31.
    A. Perez Fornos, N. Guinand, R. van de Berg, et al., “Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis,” Front. Neurology, 5, No. 1, 66–76 (2014).Google Scholar
  32. 32.
    C. Phillips, C. DeFrancisci, L. Ling, et al., “Postural responses to electrical stimulation of the vestibular end organs in human subjects,” Exp. Brain Res., 229, 181–195 (2013).CrossRefPubMedGoogle Scholar
  33. 33.
    C. Phillips., S. J. Shepherd, A. Nowack, et al., “Loss of afferent vestibular input produces central adaptation and increased gain of vestibular prosthetic stimulation,” J. Assoc. Res. Otolaryngol., 17, No. 1, 19–35 (2016).Google Scholar
  34. 34.
    M. A. Rahman, C. Dai, G. Y. Fridman, et al., “Restoring the 3D vestibulo-ocular reflex via electrical stimulation: The Johns Hopkins Multichannel Vestibular Prosthesis Project,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 3142–3145 (2011).Google Scholar
  35. 35.
    J. T. Rubinstein, S. Bierer, C. Kaneko, et al., “Implantation of the semicircular canals with preservation of hearing and rotational sensitivity: a vestibular neurostimulator suitable for clinical research,” Otol. Neurotol., 33, No. 5, 789–796 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    H. F. Schuknecht, Pathology of the Ear, Lea & Febiger, Pennsylvania (1993), Vol. 2 [cited in 35].Google Scholar
  37. 37.
    D. Q. Sun, B. K. Ward, Y. R. Semenov,et al., “Bilateral vestibular deficiency: quality of life and economic implications,” JAMA Otolaryngol. Head. Neck. Surg., 140, No. 6, 527–534 (2014).Google Scholar
  38. 38.
    J. I. Suzuki and B. Cohen, “Head, eye, body and limb movements from semicircular canal nerves,” Exp. Neurol., 10, 393–405 (1964).CrossRefPubMedGoogle Scholar
  39. 39.
    H. Toreyin and P. T. Bhatti, “A low power ASIC signal processor for a vestibular prosthesis,” IEEE Trans. Biomed. Circuits Syst., 10, No. 3, 768–778 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    R. van de Berg, N. Guinand, T. A. Nguyen, et al., “The vestibular implant: frequency dependency of the electrically evoked vestibulo-ocular reflex in humans,” Front. Syst. Neurosci., 20, No. 8, 255–266 (2015).Google Scholar
  41. 41.
    R. van de Berg, N. Guinand, R. J. Stokroos, et al., “The vestibular implant: quo vadis?” Front. Neurol., 2, No. 1, 47–65 (2011).PubMedPubMedCentralGoogle Scholar
  42. 42.
    C. Wall, 3rd, M. I. Kos, and J.-P. Guyot, “Eye movements in response to electric stimulation of the human posterior ampullary nerve,” Ann. Otol. Rhinol. Laryngol., 116, 369–374 (2007).CrossRefPubMedGoogle Scholar
  43. 43.
    C. Wall, 3rd, D. M. Merfeld, S. D. Rauch, and F. O. Black, “Vestibular prostheses: the engineering and biomedical issues,” J. Vestib. Res., 12, No. 2–3, 95–113 (2002–2003).Google Scholar
  44. 44.
    C. Wall, 3rd, D. M. Wrisley, and K. D. Statler, “Vibrotactile tilt feedback improves dynamic gait index: a fall risk indicator in older adults,” Gait Posture, 30, No. 1, 16–21 (2009).Google Scholar
  45. 45.
    B. K. Ward, Y. Agrawal, H. J. Hoffman, et al., “Prevalence and impact of bilateral vestibular hypofunction: results from the 2008 US National Health Interview Survey,” JAMA Otolaryngol. Head Neck Surg., 139, No. 8, 803–810 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. V. Orlov
    • 1
  • Yu. K. Stolbkov
    • 1
  • Yu. P. Gerasimenko
    • 1
  1. 1.Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations