Advertisement

Neuroscience and Behavioral Physiology

, Volume 48, Issue 6, pp 686–692 | Cite as

Current Perspectives in the MRI Diagnosis of Multiple Sclerosis: The 2016 Revised MRI Criteria

  • V. V. Bryukhov
  • I. A. Krotenkova
  • S. N. Morozova
  • M. V. Krotenkova
Article
  • 13 Downloads

MRI scanning is the main widely used diagnostic method for multiple sclerosis (MS). This article discusses the current state of the question of the effectiveness of using brain and spinal cord MRI scans in the diagnosis of patients with suspected MS. Particular attention is paid to the McDonald MRI and MAGNIMS criteria as revised in 2010 and 2016 for both remitting MS and primary progressive MS. The data presented here allow radiologists and neurologists to optimize the use of MRI scans in clinical practice for the diagnosis of MS.

Keywords

magnetic resonance tomography multiple sclerosis MRI criteria remitting multiple sclerosis primary progressive multiple sclerosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. I. McDonald et al., “Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis,” Ann. Neurol., 50, 121–127 (2001), doi:  https://doi.org/10.1002/ana.1032.CrossRefPubMedGoogle Scholar
  2. 2.
    C. H. Polman, et al., “Diagnostic criteria for multiple sclerosis: 2005 revisions to the ‘McDonald Criteria’,” Ann. Neurol., 58, 840–846 (2005), doi:  https://doi.org/10.1002/ana.20703.CrossRefPubMedGoogle Scholar
  3. 3.
    C. H. Polman et al., “Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria,” Ann. Neurol., 69, 292–302 (2011), doi:  https://doi.org/10.1002/ana.22366.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    C. M. Poser et al., “New diagnostic criteria for multiple sclerosis: guidelines for research protocols,” Ann. Neurol., 13, 227–231 (1983), doi:  https://doi.org/10.1002/ana.410130302.CrossRefPubMedGoogle Scholar
  5. 5.
    A. Charil et al., “MRI and the diagnosis of multiple sclerosis: expanding the concept of ‘no better explanation’,” Lancet Neurol., 5, 841–852 (2006), doi:  https://doi.org/10.1016/s1474-4422(06)70572-5.CrossRefPubMedGoogle Scholar
  6. 6.
    D. H. Miller et al., “Differential diagnosis of suspected multiple sclerosis: a consensus approach,” Mult. Scler., 14, 1157–1174 (2008), doi:  https://doi.org/10.1177/1352458508096878.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    X. Montalban et al., “MRI criteria for MS in patients with clinically isolated syndromes,” Neurology, 74, 427–434 (2010), doi:  https://doi.org/10.1212/wnl.0b013e3181cec45c.CrossRefPubMedGoogle Scholar
  8. 8.
    M. Filippi, M. Rocca, O. Ciccarelli, et al., “MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines,” Lancet Neurol., 15, No. 3, 292–303 (2016), doi:  https://doi.org/10.1016/s1474-4422(15)00393-2.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    X. Montalban et al., “Primary progressive multiple sclerosis diagnostic criteria: a reappraisal,” Mult. Scler., 15, 1459–1465 (1990); doi.org/10 (2009); 1177/1352458509348422.Google Scholar
  10. 10.
    R. Dobson, S. Ramagopalan, A. Davis, and G. Giovannoni, “Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude,” J. Neurol. Neurosurg. Psychiatry, 84, 909–914 (2013), doi:  https://doi.org/10.1136/jnnp.2012.304695. CrossRefPubMedGoogle Scholar
  11. 11.
    S. B. Kelly et al., “A proposed modification to the McDonald 2010 criteria for the diagnosis of primary progressive multiple sclerosis,” Mult. Scler., 19, 1095–1100 (2013), doi:  https://doi.org/10.1177/1352458512464829.CrossRefPubMedGoogle Scholar
  12. 12.
    A. Rovira et al., “MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis – clinical implementation in the diagnostic process,” Nat. Rev. Neurol., 11, 471–482 (2015), doi:  https://doi.org/10.1038/nrneurol.2015.106.CrossRefPubMedGoogle Scholar
  13. 13.
    Y. Sadaka et al., “2010 McDonald criteria for diagnosing pediatric multiple sclerosis,” Ann. Neurol., 72, 211–223 (2012), doi:  https://doi.org/10.1002/ana.23575.CrossRefPubMedGoogle Scholar
  14. 14.
    B. Kornek et al., “Evaluation of the 2010 McDonald multiple sclerosis criteria in children with a clinically isolated syndrome,” Mult. Scler., 18, 1768–1774 (2012), doi:  https://doi.org/10.1177/1352458512444661.CrossRefPubMedGoogle Scholar
  15. 15.
    S. Y. Huh et al., “The usefulness of brain MRI at onset in the differentiation of multiple sclerosis and seropositive neuromyelitis optica spectrum disorders,” Mult. Scler., 20, 695–704 (2014), doi:  https://doi.org/10.1177/1352458513506953.CrossRefPubMedGoogle Scholar
  16. 16.
    M. Absinta, M. Rocca, B. Colombo, et al., “Patients with migraine do not have MRI-visible cortical lesions,” Neurology, 259, 2695–2698 (2012), doi:  https://doi.org/10.1007/s00415-012-6571-x.CrossRefGoogle Scholar
  17. 17.
    A. Ruet, G. Arrambide, B. Brochet, et al., “Early predictors of multiple sclerosis after a typical clinically isolated syndrome,” Mult. Scler., 20, 1721–1726 (2014), doi:  https://doi.org/10.1177/1352458514533397.CrossRefPubMedGoogle Scholar
  18. 18.
    A. Ruet, M. Deloire, J. Ouallet, et al., “Predictive factors for multiple sclerosis in patients with clinically isolated spinal cord syndrome,” Mult. Scler., 17, 312–318 (2011), doi:  https://doi.org/10.1177/1352458510386999.CrossRefPubMedGoogle Scholar
  19. 19.
    B. Moraal, C. Pohl, B. Uitdehaag, et al., “Magnetic resonance imaging predictors of conversion to multiple sclerosis in the BENEFIT study,” Arch. Neurol., 66, 1345–1352 (2009), doi: https://doi.org/10.1001/archneurol. 2009.243.Google Scholar
  20. 20.
    S. Kim, D. Richman, W. Johnson, et al., “Limited utility of current MRI criteria for distinguishing multiple sclerosis from common mimickers: primary and secondary CNS vasculitis, lupus and Sjogren’s syndrome,” Mult. Scler., 20, 57–63 (2014), doi:  https://doi.org/10.1177/1352458513.491329. CrossRefPubMedGoogle Scholar
  21. 21.
    D. Kidd, F. Barkhof, R. McConnell, et al., “Cortical lesions in multiple sclerosis,” Brain, 122, 17–26 (1999), doi:  https://doi.org/10.1093/brain/122.1.17.CrossRefPubMedGoogle Scholar
  22. 22.
    J. Geurts, P. Pouwels, B. Uitdehaag, et al., “Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging,” Radiology, 236, 254–260 (2005), doi:  https://doi.org/10.1148/radiol.2361040450.CrossRefPubMedGoogle Scholar
  23. 23.
    A. Seewann, E. Kooi, and S. Roosendaal, “Postmortem verification of MS cortical lesion detection with 3D DIR,” Neurology, 78, 302–308 (2012), doi: https://doi.org/10.1212/wnl.0b013e31824528a0.CrossRefPubMedGoogle Scholar
  24. 24.
    S. Kelly, K. Kinsella, M. Duggan, et al., “A proposed modification to the McDonald 2010 criteria for the diagnosis of primary progressive multiple sclerosis,” Mult. Scler., 19, No. 8, 1095–1100 (2012), doi:  https://doi.org/10.1177/1352458512464829.CrossRefPubMedGoogle Scholar
  25. 25.
    V. V. Bryukhov, E. V. Popova, M. V. Krotenkova, and A. A. Boiko, “Radiologically isolated syndrome (MRI criteria and patient management tactics),” Zh. Nevrol. Psikhiat., 116, No. 10, Iss. 2, 52–57 (2016).Google Scholar
  26. 26.
    S. Y. Huh et al., “The usefulness of brain MRI at onset in the differentiation of multiple sclerosis and seropositive neuromyelitis optica spectrum disorders,” Mult. Scler., 20, 695–704 (2014), doi:  https://doi.org/10.1177/1352458513506953.CrossRefPubMedGoogle Scholar
  27. 27.
    M. P. Wattjes et al., “Prognostic value of high-field proton magnetic resonance spectroscopy in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis,” Neuroradiology, 50, 123–129 (2008), doi:  https://doi.org/10.1007/s00234-007-0325-y.CrossRefPubMedGoogle Scholar
  28. 28.
    M. Filippi and F. Agosta, “Imaging biomarkers in multiple sclerosis,” J. Magn. Reson. Imaging, 31, 770–788 (2010), doi:  https://doi.org/10.1002/jmri.22102.CrossRefPubMedGoogle Scholar
  29. 29.
    M. Rovaris et al., “A 3-year diffusion tensor MRI study of grey matter damage progression during the earliest clinical stage,” J. Neurol., 255, 1209–1214 (2008), doi:  https://doi.org/10.1007/s00415-008-0877-8. CrossRefPubMedGoogle Scholar
  30. 30.
    V. Barcella et al., “Evidence for retrochiasmatic tissue loss in Leber’s hereditary optic neuropathy,” Hum. Brain Mapp., 31, 1900–1906 (2010), doi:  https://doi.org/10.1002/hbm.20985.CrossRefPubMedGoogle Scholar
  31. 31.
    C. Yu et al., “Pathogenesis of normal-appearing white matter damage in neuromyelitis optica: diffusion-tensor MR imaging,” Radiology, 246, 222–228 (2008), doi:  https://doi.org/10.1148/radiol.2461062075.CrossRefPubMedGoogle Scholar
  32. 32.
    H. Kang, et al., “Application and a proposed modification of the McDonald criteria for the diagnosis of multiple sclerosis in a Canadian cohort of patients with clinically isolated syndromes,” Mult. Scler., 20, 458–463 (2014), doi:  https://doi.org/10.1177/1352458513475492. CrossRefPubMedGoogle Scholar
  33. 33.
    R. Mitjana et al., “Diagnostic value of brain chronic black holes on T1-weighted MR images in clinically isolated syndromes,” Mult. Scler., 20, 1471–1477 (2014), doi:  https://doi.org/10.1177/1352458514526083.CrossRefPubMedGoogle Scholar
  34. 34.
    V. V. Bryukhov, S. N. Kulikova, M. V. Krotenkova, et al., “Current visualization methods in the pathogenesis of multiple sclerosis,” Ann. Klin. Eksperim. Nevrol., No. 3, 47–53 (2013).Google Scholar
  35. 35.
    E. C. Tallantyre et al., “Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions,” Neurology, 76, 534–539 (2011), doi:  https://doi.org/10.1212/wnl.0b013e31820b7630.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    E. M. Haacke, Y. Xu, Y. C. Cheng, and J. R. Reichenbach, “Susceptibility weighted imaging (SWI),” Magn. Reson. Med., 52, 612–618 (2004), doi:  https://doi.org/10.1002/mrm.20198.CrossRefPubMedGoogle Scholar
  37. 37.
    I. D. Kilsdonk et al., “Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla,” Eur. Radiol., 24, 841–849 (2014), doi:  https://doi.org/10.1007/s00330-013-3080-y.CrossRefPubMedGoogle Scholar
  38. 38.
    M. Absinta et al., “Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process,” Ann. Neurol., 74, 669–678 (2013), doi: https://doi.org/10.102/ana.23959.Google Scholar
  39. 39.
    T. Kau et al., “The ‘central vein sign’: is there a place for susceptibility weighted imaging in possible multiple sclerosis?” Eur. Radiol., 23, 1956–1962 (2013), doi:  https://doi.org/10.1007/s00330-013-2791-4.CrossRefPubMedGoogle Scholar
  40. 40.
    P. Sati et al., “Rapid, high-resolution, whole-brain, susceptibility-based MRI of multiple sclerosis,” Mult. Scler., 20, 1464–1470 (2014), doi:  https://doi.org/10.1177/1352458514525868.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    J. Hagemeier et al., “Phase white matter signal abnormalities in patients with clinically isolated syndrome and other neurologic disorders,” Am. J. Neuroradiol., 35, 1916–1923 (2014), doi:  https://doi.org/10.3174/ajnr.a3969.CrossRefPubMedGoogle Scholar
  42. 42.
    B. Simon et al., “Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla,” Eur. Radiol., 20, 1675–1683 (2010), doi:  https://doi.org/10.1007/s00330-009-1705-y.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    M. Filippi et al., “Intracortical lesions: relevance for new MRI diagnostic criteria for multiple sclerosis,” Neurology, 75, 1988–1994 (2010), doi:  https://doi.org/10.1212/wnl.0b013e3181ff96f6.CrossRefPubMedGoogle Scholar
  44. 44.
    I. F. Pestalozza et al., “Monthly brain magnetic resonance imaging scans in patients with clinically isolated syndrome,” Mult. Scler., 11, 390–394 (2005), doi:  https://doi.org/10.1191/1352458505ms1175oa.CrossRefPubMedGoogle Scholar
  45. 45.
    C. Lebrun et al., “Association between clinical conversion to multiple sclerosis in radiologically isolated syndrome and magnetic resonance imaging, cerebrospinal fluid, and visual evoked potential: follow-up of 70 patients,” Arch. Neurol., 66, 841–846 (2009), doi:  https://doi.org/10.1001/archneurol.2009.119.CrossRefPubMedGoogle Scholar
  46. 46.
    V. V. Bryukhov, I. A. Krotenkova, S. N. Morozova, and M. V. Krotenkova, “Standardization of MRI studies in multiple sclerosis,” Zh. Nevrol. Psikhiat., 116, No. 10, part 2, 27–34 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. V. Bryukhov
    • 1
  • I. A. Krotenkova
    • 1
  • S. N. Morozova
    • 1
  • M. V. Krotenkova
    • 1
  1. 1.Neurology Science CenterMoscowRussia

Personalised recommendations