Advertisement

Neuroscience and Behavioral Physiology

, Volume 47, Issue 5, pp 517–523 | Cite as

Changes in Nociceptive Thresholds and Adenylyl Cyclase System Activity in Skeletal Muscles in Rats with Acute and Mild Type 1 Diabetes

  • V. N. Shipilov
  • A. M. Trost
  • O. V. Chistyakova
  • K. V. Derkach
  • A. O. Shpakov
Article
  • 22 Downloads

Diabetic peripheral neuropathy (DPN) is one of the commonest complications of type 1 diabetes mellitus (DM1). The aims of the present work were to study the dynamics of the development of pain-type DPN and the functional status of the hormone-sensitive adenylyl cyclase signal system (ACSS) in the skeletal muscle of rats with models of acute and mild DM1 and to investigate the influences on these of insulin therapy using different routes of hormone administration – intranasal and peripheral. The nociceptive threshold in rats decreased in both models of DM1; the stimulatory effects of guanine nucleotides (GIDP) and adrenergic agonists (isoproterenol, BRL-37344) on adenylyl cyclase (AC) also decreased. The AC-stimulating effect of relaxin decreased in animals with acute DM1, while the change in mild DM1 was minor. Peripheral administration of insulin to rats with acute DM1 increased the nociceptive threshold and partially restored the AC effect of the β3 agonist BRL-37344. Intranasal administration of insulin to rats with mild DM1 also led to an increase in the nociceptive threshold and partially restored basal and BRL-37344-stimulated AC activity in the skeletal muscle of diabetic animals. Thus, skeletal muscle in rats with acute and mild DM1 showed impaired nociceptive sensitivity and ACSS function, which was partially restored by treatment of animals with insulin given peripherally (acute DM1) or intranasally (mild DM1).

Keywords

diabetes mellitus diabetic peripheral neuropathy insulin intranasal administration mechanical nociceptive threshold adenylyl cyclase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. C. Ahlgren, “Mechanical hyperalgesia in streptozotocin-diabetic rats,” Neuroscience, 52, No. 4, 1049–1055 (1993).CrossRefPubMedGoogle Scholar
  2. 2.
    M. D. Allen, B. Major, K. Kimpinski, et al., “Skeletal muscle morphology and contractile function in relation to muscle denervation in diabetic neuropathy,” J. Appl. Physiol. (1985), 116, No. 5, 545–552 (2014).CrossRefGoogle Scholar
  3. 3.
    American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care,, 37, Suppl. 1, S81–S90 (2014).Google Scholar
  4. 4.
    D. Bani, “Relaxin as a natural agent for vascular health,” Vasc. Health Risk Manag., 4, No. 3, 515–524 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    G. J. Biessels, N. A. Cristino, G. J. Rutten, et al., “Neurophysiological changes in the central and peripheral nervous system of streptozotocin-diabetic rats. Course of development and effects of insulin treatment,” Brain, 122, No. Part 4, 757–768 (1999).Google Scholar
  6. 6.
    E. O. Brennesvik, C. Ktori, J. Ruzzin, et al., “Adrenaline potentiates insulin-stimulated PKB activation via cAMP and Epac: implications for cross talk between insulin and adrenaline,” Cell Signal, 17, No. 12, 1551–1559 (2005).CrossRefPubMedGoogle Scholar
  7. 7.
    B. C. Callaghan, H. T. Cheng, C. L. Stables, et al., “Diabetic neuropathy: clinical manifestations and current treatments,” Lancet Neurol., 11, No. 6, 521–534 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    F. Dehghan, B. S. Haerian, S. Muniandy, et al., “The effect of relaxin on the musculoskeletal system,” Scand. J. Med. Sci. Sports, 24, No. 4, e220–e229 (2014).CrossRefPubMedGoogle Scholar
  9. 9.
    S. V. Dhuria, L. R. Hanson and W. H. Frey, 2nd, “Intranasal delivery to the central nervous system: Mechanisms and experimental considerations,” J. Pharm. Sci., 99, No. 4, 1654–1673 (2010).CrossRefPubMedGoogle Scholar
  10. 10.
    J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic complications,” Physiol. Rev., 93, No. 1, 137–188 (2013).CrossRefPubMedGoogle Scholar
  11. 11.
    G. J. Francis, J. A. Martinez, W. Q. Liu, et al., “Motor end plate innervation loss in diabetes and the role of insulin,” J. Neuropathol. Exp. Neurol., 70, No. 5, 323–339 (2011).CrossRefPubMedGoogle Scholar
  12. 12.
    D. Fuchs, F. Birklein, P. W. Reeh, and S. K. Sauer, “Sensitized peripheral nociception in experimental diabetes of the rat,” Pain, 151, No. 2, 496–505 (2010).CrossRefPubMedGoogle Scholar
  13. 13.
    A. J. Garber, “The impact of streptozotocin-induced diabetes mellitus on cyclic nucleotide regulation of skeletal muscle amino acid metabolism in rat,” J. Clin. Invest., 65, No. 2, 478–487 (1980).CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    J. R. Hadcock, J. D. Port, M. S. Gelman, and C. C. Malbon, “Crosstalk between tyrosine kinase and G-protein-linked receptors. Phosphorylation of beta 2-adrenergic receptors in response to insulin,” J. Biol. Chem., 267, No. 36, 26 017–26 022 (1992).Google Scholar
  15. 15.
    M. Heni, R. Wagner, S. Kullmann, et al., “Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men,” Diabetes, 63, No. 12, 4083–4088 (2014).CrossRefPubMedGoogle Scholar
  16. 16.
    Y. M. J. J. Hoybergs and T. F. Meert, “The effect of low-dose insulin on mechanical sensitivity and allodynia in type I diabetes neuropathy,” Neurosci. Lett., 417, No. 2, 149–154 (2007).CrossRefPubMedGoogle Scholar
  17. 17.
    G. S. Lynch and J. G. Ryall, “Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease,” Physiol. Rev., 88, No. 2, 729–767 (2008).CrossRefPubMedGoogle Scholar
  18. 18.
    P. Maurel and J. L. Salzer, “Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI3-kinase activity,” J. Neurosci., 20, No. 12, 4635–4645 (2000).PubMedGoogle Scholar
  19. 19.
    S. Negishi, Y. Li, A. Usas, et al., “The effect of relaxin treatment on skeletal muscle injuries,” Am. J. Sports Med., 33, No. 12, 1816–1824 (2005).CrossRefPubMedGoogle Scholar
  20. 20.
    R. A. Ngala, J. O’Dowd, S. J. Wang, et al., “Beta2-adrenoceptors and non-beta-adrenoceptors mediate effects of BRL37344 and clenbuterol on glucose uptake in soleus muscle: studies using knockout mice,” Br. J. Pharmacol., 158, No. 7, 1676–1682 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    T. Ogata, S. Ijima, S. Hoshikawa, et al., “Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination,” J. Neurosci., 24, No. 30, 6724–6732 (2004).CrossRefPubMedGoogle Scholar
  22. 22.
    J. Piriz, I. Torres-Aleman, and Nunez, “Independent alterations in the central and peripheral somatosensory pathways in rat diabetic neuropathy,” Neuroscience, 160, No. 2, 402–411 (2009).Google Scholar
  23. 23.
    G. Plourde, S. Rousseau-Migneron, and A. Nadeau, “Physical training increases beta-adrenoceptor density and adenylate cyclase activity in high-oxidative skeletal muscle of diabetic rats,” Metabolism, 41, No. 12, 1331–1335 (1992).CrossRefPubMedGoogle Scholar
  24. 24.
    D. Romanovsky, N. F. Cruz, G. A. Dienel, and M. Dobretsov, “Mechanical hyperalgesia correlates with insulin deficiency in normoglycemic streptozotocin-treated rats,” Neurobiol. Dis., 24, No. 2, 384–394 (2006).CrossRefPubMedGoogle Scholar
  25. 25.
    D. Romanovsky, S. L. Hastings, J. R. Stimers, and M. Dobretsov, “Relevance of hyperglycemia to early mechanical hyperalgesia in streptozotocin-induced diabetes,” J. Peripher. Nerv. Syst., 9, No. 2, 62–69 (2004).CrossRefPubMedGoogle Scholar
  26. 26.
    J. G. Ryall, D. R. Plant, P. Gregorevic, et al., “Beta 2-agonist administration reverses muscle wasting and improves muscle function in aged rats,” J. Physiol., 555, Pt. 1, 175–188 (2004).Google Scholar
  27. 27.
    E. Shemesh, A. Rudich, I. Harman-Boehm, and T. Cukierman-Yaffe, “Effect of intranasal insulin on cognitive function: a systematic review,” J. Clin. Endocrinol. Metab., 97, No. 2, 366–376 (2012).CrossRefPubMedGoogle Scholar
  28. 28.
    A. O. Shpakov, O. V. Chistyakova, K. V. Derkach, et al., “Intranasal insulin affects adenyl cyclase system in rat tissues in neonatal diabetes,” Cent. Eur. J. Biol., 7, No. 1, 33–47 (2012).Google Scholar
  29. 29.
    A. O. Shpakov and K. V. Derkach, “The functional state of hormone-sensitive adenylyl cyclase signaling system in diabetes mellitus,” J. Signal Transduct., 2013, 594213 (2013).Google Scholar
  30. 30.
    A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva, et al., “Functional defects in adenylyl cyclase signaling mechanisms of insulin and relaxin in skeletal muscles of rat with streptozotocin type 1 diabetes,” Cent. Eur. J. Biol., 1, No. 4, 530–544 (2006).Google Scholar
  31. 31.
    U. Stockhorst, D. de Fries, H. J. Steingrueber, and W. A. Scherbaum, “Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans,” Physiol. Behav., 83, No. 1, 47–54 (2004).CrossRefPubMedGoogle Scholar
  32. 32.
    U. Stockhorst, H. J. Steingruber, and W. A. Scherbaum, “Classically conditioned responses following repeated insulin and glucose administration in humans,” Behav. Brain Res., 110, No. 1–2, 143–159 (2000).CrossRefPubMedGoogle Scholar
  33. 33.
    J. T. Stuenaes, A. Bolling, A. Ingvaldsen, et al., “Beta-adrenoceptor stimulation potentiates insulin-stimulated PKB phosphorylation inrat cardiomyocytes via cAMP and PKA,” Br. J. Pharmacol., 160, No. 1, 116–129 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    R. Taliyan and P. L. Sharma, “Possible mechanism of protective effect of thalidomide in STZ-induced-neuropathic pain behavior in rats,” Inflammopharmacology, 20, No. 2, 89–97 (2012).CrossRefPubMedGoogle Scholar
  35. 35.
    S. Tesfaye, A. J. Boulton, P. J. Dyck, et al., “Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments,” Diabetes Care, 33, No. 10, 2285–2293 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    N. Toda, T. Imamura, and T. Okamura, “Alteration of nitric oxidemediated blood flow regulation in diabetes mellitus,” Pharmacol. Ther., 127, No. 3, 189–209 (2010).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • V. N. Shipilov
    • 1
  • A. M. Trost
    • 1
  • O. V. Chistyakova
    • 1
  • K. V. Derkach
    • 1
  • A. O. Shpakov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations