Neuroscience and Behavioral Physiology

, Volume 46, Issue 5, pp 518–522 | Cite as

Rehabilitation of Stroke Patients with a Bioengineered “Brain–Computer Interface with Exoskeleton” System

  • S. V. KotovEmail author
  • L. G. Turbina
  • P. D. Bobrov
  • A. A. Frolov
  • O. G. Pavlova
  • M. E. Kurganskaya
  • E. V. Biryukova

Objective. To study the potential for use of a bioengineered system consisting of an electroencephalograph, a personal computer running a program for the synchronous data transmission, recognition, and classification of electroencephalogram (EEG) signals, and formation of control commands in real time, combined with a hand exoskeleton (a bioengineered “brain–computer interface (BCI) with exoskeleton” system) for the motor rehabilitation of patients with poststroke upper limb paresis. Materials and methods. Brain–computer interfaces have potential for use in neurorehabilitation. A total of five patients with poststroke upper limb paresis received neurorehabilitation courses consisting of 8–10 sessions. All the patients had large foci of poststroke changes of cortical-subcortical locations as demonstrated by MRI scans. Results. Improvements in neurological status on the NIHSS were seen after courses of sessions, with significant increases in the volume and strength of movements in the paralyzed hand, improvements in the coordination of its movements, and minor decreases in the level of spasticity. There was an increase in daily activity on the Barthel index, mainly due to improvement in fi ne motor function. Levels of disability showed clear changes on the modified Rankin scale. Conclusions. Use of the “brain–computer interface (BCI) with exoskeleton” system in the rehabilitation of patients with poststroke paresis of the hand gave positive results, pointing to the need to continue these studies.


stroke paresis of the hand rehabilitation brain–computer interface exoskeleton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Kotov, L. V. Stakhovskaya (eds.), E. V. Isakova, et al., Stroke, MIA. Moscow (2004).Google Scholar
  2. 2.
    D. Lloyd-Jones, R. J. Adams, T. M. Brown, et al., “Heart disease and stroke statistics – 2010 update: a report from the American Heart Association,” Circulation, 121, 46–215 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Paolucci, M. Bragoni, P. Coiro, et al., “Quantification of the probability of reaching mobility independence at discharge from a rehabilitation hospital in nonwalking early ischemic stroke patients: a multivariate study,” Cerebrovasc. Diseases, 26, No. 1, 16–22 (2008).CrossRefGoogle Scholar
  4. 4.
    M. C. Cirstea and M. F. Levin, “Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors,” Neurorehab. Neural Repair, 21, No. 5, 398–411 (2007).CrossRefGoogle Scholar
  5. 5.
    C. E. Lang, J. R. Macdonald, D. S. Reisman, et al., “Observation of amounts of movement practice provided during stroke rehabilitation,” Arch. Phys. Med. Rehabil., 90, No. 10, 1692–1698 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    J. W. Krakauer, “Motor learning: its relevance to stroke recovery and neurorehabilitation,” Curr. Opin. Neurol., 19, No. 1, 84–90 (2006).CrossRefPubMedGoogle Scholar
  7. 7.
    J. M. Belda-Lois, S. Mena-Del Horno, I. Bermejo-Bosch, et al., “Rehabilitation of gait after stroke: a review towards a top-down approach,” J. Neuroeng. Rehabil., 13, 8–66 (2011).Google Scholar
  8. 8.
    M. Iosa, G. Morone, A. Fusco, et al., Seven Capital Devices for the Future of Stroke Rehabilitation, Hindawi Publishing Corporation Stroke Research and Treatment (2012), doi:  10.1155/2012/187965.
  9. 9.
    P. Bobrov, A. Frolov, C. Cantor, et al., “Brain–computer interface based on generation of visual images,” PLoS One, 6, No. 6, 20674 (2011), doi:  10.1371/journal.pone.0020674.
  10. 10.
    C. Enzinger, S. Ropele, F. Fazekas, et al., “Brain motor system function in a patient with complete spinal cord injury following extensive brain–computer interface training,” Exp. Brain Res., 190, No. 2, 215–223 (2008).CrossRefPubMedGoogle Scholar
  11. 11.
    G. Pfurtscheller, G. R. Muller-Putz, R. Scherer, and C. Neuper, “Rehabilitation with brain–computer interface systems,” Computer, 41, No. 10, 58–65 (2008).Google Scholar
  12. 12.
    H. P. Adams, G. del Zoppo, M. J. Alberts, et al., “Guidelines for the early management of adults with ischemic stroke,” Stroke, 38, 1655–1711 (2007).CrossRefPubMedGoogle Scholar
  13. 13.
    D. S. Nichols-Larsen, P. C. Clark, A. Zeringue, et al., “Factors influencing stroke survivors’ quality of life during subacute recovery,” Stroke, 36, No. 7, 1480–1484 (2005).Google Scholar
  14. 14.
    S. J. Albert and J. Kesselring, “Neurorehabilitation,” in: Textbook of Stroke Medicine, M. Brainin and W.-D. Heiss (eds.), Cambridge University Press (2010), pp. 283–306.Google Scholar
  15. 15.
    R. Dickstein and J. E. Deutsch, “Motor imagery in physical therapist practice,” Phys. Ther., 87, 942–953 (2007), doi:  10.2522/ptj.20060331.
  16. 16.
    N. Sharma, V. M. Pomeroy, and J. C. Baron, “Motor imagery: a back door to the motor system after stroke?” Stroke, 37, 1941–1952 (2006), doi:  10.1161/01.STR.0000226902.43357.fc.
  17. 17.
    C. Neuper, R. Scherer, S. Wriessnegger, and G. Pfurtscheller, “Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain–computer interface,” Clin. Neurophysiol., 120, 239–247 (2009).CrossRefPubMedGoogle Scholar
  18. 18.
    G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clin. Neurophysiol., 110, 1842–1857 (1999).CrossRefPubMedGoogle Scholar
  19. 19.
    D. J. McFarland and J. R. Wolpaw, “Sensorimotor rhythm-based brain computer interface (BCI): model order selection for autoregressive spectral analysis,” J. Neural. Eng., 5, 155–162 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    A. A. Frolov, E. V. Biryukova, P. D. Bobrov, et al., “Principles of rehabilitation based on the use of a brain–computer interface and biologically appropriate control of an exoskeleton,” Fiziol. Cheloveka, 39, No. 2, 99–113 (2013).PubMedGoogle Scholar
  21. 21.
    A. C. Lo, P. D. Guarino, L. G. Richards, et al., “Robot-assisted therapy for longterm upper-limb impairment after stroke,” N. Eng. J. Med., 362, 1772– 1783 (2010).CrossRefGoogle Scholar
  22. 22.
    C. D. Takahashi, L. Der-Yeghiaian, V. Le, et al., “Robot-based hand motor therapy after stroke,” Brain, 131, 425–437 (2008).CrossRefPubMedGoogle Scholar
  23. 23.
    M.-H. Milot, S. J. Spencer, V. Chan, et al., “A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES,” J. Neuroeng. Rehabil., 10, 112 (2013).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. V. Kotov
    • 1
    Email author
  • L. G. Turbina
    • 1
  • P. D. Bobrov
    • 2
  • A. A. Frolov
    • 2
  • O. G. Pavlova
    • 2
  • M. E. Kurganskaya
    • 2
  • E. V. Biryukova
    • 2
    • 3
  1. 1.Vladimirskii Moscow Regional Research Clinical InstituteMoscowRussia
  2. 2.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  3. 3.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations