Advertisement

Neuroscience and Behavioral Physiology

, Volume 45, Issue 4, pp 431–439 | Cite as

Characteristics of Postsynaptic Currents in Primary Cultures of Rat Cerebral Cortical Neurons

  • D. A. Sibarov
  • S. M. Antonov
Article

The features of the generation of postsynaptic currents in primary cultures of cortical neurons from rat brains were studied at 7–20 days in vitro (DIV). Use of specific blockers of postsynaptic ion channels showed that from 10 DIV, neurons generated all types of electrical activity typical of the adult cortex: spontaneous miniature inhibitory (mIPSP) and excitatory (mEPSP) currents, as well as giant excitatory currents and action potentials (AP). The frequency of mEPSP increased exponentially from DIV 7 to 20 in parallel with a change in the nature of AP generation. mEPSP generated by activation of NMDA and AMPA or only AMPA receptors were identified. The role of inhibition of presynaptic NMDA receptors by magnesium ions or AP5 in modulating the frequency and amplitude of mEPSP was demonstrated; this was a characteristic of neurons cultured from brain slices and appeared to linked with the lack of glial control of synaptic transmission.

Keywords

primary cultures neurons cortex postsynaptic currents AMPA and NMDA receptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Abushik, A. E. Bol’shakova, D. A. Sibarov, and S. M. Antonov, “Heterogeneity of the mechanisms of the calcium response to kainate and types of neurons in primary cortical neuron cultures from rats,” Biol. Membr., 28, No. 1, 25–34 (2011).Google Scholar
  2. 2.
    A. L. Zefirov and S. Yu. Cheranov, “Molecular mechanisms of quantum transmitter secretion in synapses,” Usp. Fiziol. Nauk, 31, No. 3, 3–22 (2000).PubMedGoogle Scholar
  3. 3.
    E. V. Mironova, A. A. Lukina, N. B. Brovtsyna, et al., “Type of glutamate receptor determining the concentration dependence of its neurotoxic action on rat cerebral cortex neurons,” Zh. Evolyuts. Biokhim. Fiziol., 42, 559–566 (2006).Google Scholar
  4. 4.
    S. M. Antonov and J. W. Johnson, “Voltage-dependent interaction of open channel blocking molecules with gating of NMDA receptors in rat cortical neurons,” J. Physiol., 493, 425–445 (1996).CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    S. M. Antonov and J. W. Johnson, “Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg2+,” Proc. Natl. Acad. Sci. USA, 96, 14,571–14,576 (1999).CrossRefGoogle Scholar
  6. 6.
    S. M. Antonov, N. I. Kalinina, G. G. Kurchavji, et al., “Identification of two types of excitatory monosynaptic inputs in frog spinal motoneurons,” Neurosci. Lett., 109, 82–87 (1990).CrossRefPubMedGoogle Scholar
  7. 7.
    S. M. Antonov and L. G. Magazanik, “Intense non-quantal release of glutamate in an insect neuromuscular junction,” Neurosci. Lett., 93, No. 2–3, 204–208 (1988).CrossRefPubMedGoogle Scholar
  8. 8.
    M. C. Ashby, M. I. Daw, and J. T. R. Isaac, “AMPA receptors,” in: The Glutamate Receptors, R. W. Gereau and G. T. Swanson (eds.), Humana Press, Totowa, NJ (2008).Google Scholar
  9. 9.
    S. L. Buldakova, D. B. Tikhonov, and L. G. Magazanik, “Analysis of the excitatory and inhibitory components of postsynaptic currents in pyramidal neurons and interneurons in the rat hippocampus,” Neurosci. Behav. Physiol., 35, No. 8, 835–843 (2005).CrossRefPubMedGoogle Scholar
  10. 10.
    M. A. Dichter, “Rat cortical neurons in cell culture: culture methods: cell morphology electrophysiology, and synapse formation,” Brain Res., 149, No. 2, 2792–93 (1978).CrossRefGoogle Scholar
  11. 11.
    F. Fonnum, “Glutamate: A neurotransmitter in mammalian brain,” J. Neurochem., 42, No. 1, 111 (1984).Google Scholar
  12. 12.
    G. W. Gross, W. Y. Wen, and J. W. Lin, “Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures,” J. Neurosci. Meth., 15, No. 3, 243–252 (1985).CrossRefGoogle Scholar
  13. 13.
    E. B. Han and C. F. Stevens, “Development regulates a switch between post- and presynaptic strengthening in response to activity deprivation,” Proc. Natl. Acad. Sci. USA, 106, 10,817–10,822 (2009).CrossRefGoogle Scholar
  14. 14.
    D. Ito, H. Tamate, M. Nagayama, et al., “Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays,” Neurosci., 171, 50–61 (2010).CrossRefGoogle Scholar
  15. 15.
    B. Katz and R. Miledi, “Does the motor nerve impulse evoke ‘nonquantal’ transmitter release?” Proc. Roy. Soc. Lond. B. Biol. Sci., 212, No. 1186 131–137 (1981).CrossRefGoogle Scholar
  16. 16.
    R. A. Lester, J. D. Clements, G. L. Westbrook, and C. E. Jahr, “Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents,” Nature, 346, 565–567 (1990).CrossRefPubMedGoogle Scholar
  17. 17.
    C. Lesuisse and L. J. Martin, “Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death,” J. Neurobiol., 51, No. 1, 9–23 (2002).CrossRefPubMedGoogle Scholar
  18. 18.
    A. K. McAllister and C. F. Stevens, “Nonsaturation of AMPA and NMDA receptors at hippocampal synapses,” Proc. Natl. Acad. Sci. USA, 97, No. 11, 6173–6178 (2000).CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    C. J. McBain and R. Dingledine, “Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurones of rat hippocampus,” J. Physiol., 462, 373–392 (1993).CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    E. V. Mironova, A. A. Evstratova, and S. M. Antonova, “A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture,” J. Neurosci. Meth., 163, No. 1, 1–8 (2007).CrossRefGoogle Scholar
  21. 21.
    I. Mizuta, M. Katayama, M. Watanabe, et al., “Developmental expression of NMDA receptor subunits and the emergence of glutamate neurotoxicity in primary cultures of murine cerebral cortical neurons,” Cell. Mol. Life Sci., 54, 721–725 (1998).CrossRefPubMedGoogle Scholar
  22. 22.
    J. Mosbacher, R. Schoepfer, H. Monyer, et al., “A molecular determinant for submillisecond desensitization in glutamate receptors,” Science, 266, No. 5187, 1059–1062 (1994).CrossRefPubMedGoogle Scholar
  23. 23.
    C. I. O. Myme, K. Sugino, G. G. Turrigiano, and S. B. Nelson, “The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices,” J. Neurophysiol., 90, No. 2, 771–779 (2003).CrossRefPubMedGoogle Scholar
  24. 24.
    K. A. Petrova, A. I. Malomouzh, I. V. Kovyazina, et al., “Regulation of acetylcholinesterase activity by nitric oxide in rat neuromuscular junction via N-methyl-D-aspartate receptor activation,” Eur. J. Neurosci., 37, No. 2, 181–189 (2013).CrossRefGoogle Scholar
  25. 25.
    P. S. Pinheiro and C. Mulle, “Presynaptic glutamate receptors: physiological functions and mechanisms of action,” Nat. Rev. Neurosci., 9, 423–436 (2008).CrossRefPubMedGoogle Scholar
  26. 26.
    D. A. Sibarov, A. E. Bolshakov, P. A. Abushik, et al., “Na+, K+- ATPase functionally interacts with the plasma membrane Na+, Ca2+- exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress,” J. Pharmacol. Experim. Ther., 343, No. 3, 596–607 (2012).CrossRefGoogle Scholar
  27. 27.
    M. Szczot, T. Wojtowicz, and J. W. Mozrzymas, “GABAergic and glutamatergic currents in hippocampal slices and neuronal cultures show profound differences: A clue to a potent homeostatic modulation,” J. Physiol. Pharmacol., 61, No. 4, 501–506 (2010).PubMedGoogle Scholar
  28. 28.
    O. Vergun, J. Keelan, B. I. Khodorov, and M. R. Duchen, “Glutamateinduced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurons,” J. Physiol., 519, No. 2, 451–466 (1999).CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    F. Vyskocil, A. I. Malomouzh, and E. E. Nikolsky, “Non-quantal acetylcholine release at the neuromuscular junction,” Physiol. Res., 58, No. 6, 763–784 (2009).PubMedGoogle Scholar
  30. 30.
    J. Wang,Y. Jiang, H. Cao, et al., “Long-term effect of early discharge on EPSC and [Ca2+]i in developing neurons,” Neurosci. Lett., 397, No. 102, 104–109 (2006).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations