Neuroscience and Behavioral Physiology

, Volume 42, Issue 9, pp 963–968 | Cite as

Importance of the Pharmacokinetics of Valproic Acid in an Individualized Approach to the Treatment of Epileptic Women of Fertile Age

  • N. A. Shnaider
  • D. A. Sychev
  • M. S. Pilyugina
  • D. V. Dmitrenko
  • E. N. Bochanova
  • E. A. Shapovalova

A clinical case of the development of therapeutic side effects in an epileptic woman of childbearing age is presented. The development of therapeutic side effects occurred on the background of an intermediate therapeutic dose of a valproic acid formulation and was associated with primary (idiopathic) and secondary (valproate-induced) impairments to the folate cycle on the background of a combination of a polymorphism in the CYP2C9*3 gene and a mutation in the MTHFR gene.


epilepsy women valproic acid folic acid antagonist pharmacokinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    OMIM *607093, www/ncbi/nlm/ cgi?id=607093.Google Scholar
  2. 2.
    V. S. Baranov, E. V. Baranova, T. E. Ivashchenko, and M. V. Aseev, The Human Genome and ‘Predisposition’ Genes. Introduction to Predictive Medicine [in Russian], Intermedika, St. Petersburg (2000).Google Scholar
  3. 3.
    Yu. B. Belousov, A. B. Gekht, L. E. Milchakova, et al., “Clinicaleconomic efficacy of the treatment of patients with epilepsy,” in: Qualitative Clinical Practice [in Russian], (2002).Google Scholar
  4. 4.
    V. A. Karlov, Epilepsy in Children and Adults, Women and Men: Guidelines for Physicians [in Russian], OAO Meditsina Press, Moscow (2010).Google Scholar
  5. 5.
    V. G. Kukes, D. A. Sychev, and E. V. Shikh, “Studies of the drug biotransformation – a pathway to increasing the efficacy and safety of drug treatment,” Vrach, No. 1, 6–8 (2007).Google Scholar
  6. 6.
    V. G. Kukes, S. V. Grachev, D. A. Sychev, and G. V. Ramenskaya, Drug Metabolism. The Scientific Grounds for Personalized Medicine: Guidelines for Physicians [in Russian], GEOTAR-Media, Moscow (2008).Google Scholar
  7. 7.
    M. S. Pilyugina, “Pathways of the metabolism of valproic acid formulations and carbamazapine,” Vestn. Kin. Boln. No. 51, 3, No. 10, 52–55 (2010).Google Scholar
  8. 8.
    D. A. Sychev, G. V. Ramenskaya, I. V. Ignatiev, and V. G. Kukus, Clinical Pharmacogenetics [in Russian],V. G. Kukes and N. P. Bochkova (eds.), GEOTAR-Media, Moscow (2007).Google Scholar
  9. 9.
    N. A. Shnaider, M. S. Pilyugina, D. V. Dmitrenko, et al., “A personalized approach to the treatment of epilepsy – a pathway to decreasing cases of drug resistance,” Biomeditsina, No. 3, 172–174 (2010).Google Scholar
  10. 10.
    N. A. Shnaider, M. S. Pilyugina, D. V. Dmitrenko, et al., “An individual approach to the selection of antiepileptic treatment and the clinical pharmacological monitoring of anticonvulsants – a pathway to rational drug use,” Klin. Farmakol. Ter., No. 6, 178–180 (2010).Google Scholar
  11. 11.
    N. A. Shnaider, M. S. Pilyugina, D. V. Dmitrenko, et al., “The frequency of adverse drug reactions on the background of use of anticonvulsants in epilepsy patients,” Klin. Farmakol. Ter., No. 6, 180–184 (2010).Google Scholar
  12. 12.
    M. G. Aspinall and R. G. Hamermesh, “Realizing the promise of personalized medicine,” Harv. Bus. Rev., 85, No. 10, 108–117 (2007).PubMedGoogle Scholar
  13. 13.
    M. Brooks, “Valproic acid in pregnancy linked to several congenital malformations,” New Engl. J. Med., 362, 2185–2193 (2010).CrossRefGoogle Scholar
  14. 14.
    J. E. Finan and R. Y. Zhao, “From molecular diagnostics to personalized testing,” Pharmacogenomics, 8, No. 1, 85–99 (2007).PubMedCrossRefGoogle Scholar
  15. 15.
    E. Giovanucci, J. Chen, S. A. Smith-Warner, et al., “Methylenetetrahydrofolate reductase, alcohol dehydrogenase, diet, and risk of colorectal adenomas,” Cancer Epidemiol. Biomarkers Prev., 12, No. 10, 970–979 (2003).Google Scholar
  16. 16.
    R. M. Gueant-Rodriguez, C. Rendeli, B. Namour, et al., “Transcobalamin and methionine synthase reductase mutated polymorphisms aggravate the risk of neural tube defects in humans,” Neurosci. Lett., 334, No. 3, 189–192 (2003).CrossRefGoogle Scholar
  17. 17.
  18. 18.
    P. N. Kirke, J. L. Mills, A. M. Molloy, et al., “Impact of the MTHFR C677T polymorphism on risk of neural tube defects: case-control study,” Brit. Med. J., 328, No. 7455, 1535–1536 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    L. A. Kluijtmans, L. P. van den Heuvel, and G. H. Boers, “Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene, is a genetic risk factor for cardiovascular disease,” Am. J. Hum. Genet., 58, No. 1, 35–41 (1996).PubMedGoogle Scholar
  20. 20.
    I. Matok, R. Gorodisher, G. Koren, et al., “Exposure to folic acid antagonists during the first trimester of pregnancy and the risk of major malformations,” Brit. J. Clin. Pharmacol., 68, No. 6, 956–962 (2009).CrossRefGoogle Scholar
  21. 21.
    A. Pilotto, D. Seripa, M. Franceschi, et al., “Genetic susceptibility to non-steroidal anti-inflammatory drug-related gastroduodenal bleeding: role of cytochrome P450 2C9 polymorphisms,” Gastroenterology, 133, No. 2, 465–471 (2007).PubMedCrossRefGoogle Scholar
  22. 22.
    D. M. Roberts and N. A. Buckley, “Pharmacokinetic considerations in clinical toxicology: clinical applications,” Clin. Pharmacokinet., 46, No. 11, 897–939 (2007).PubMedCrossRefGoogle Scholar
  23. 23.
    S. C. Sim, C. Risinger, M. L. Dahl, et al., “A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants,” Clin. Pharmacol. Ther., 79, No. 1, 103–113 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    G. Toffoli, A. Russo, and F. Innocenti, “Effect of methylenetetrahydrofolate reductase 677C->T polymorphism on toxicity and homocysteine plasma level after chronic methotrexate treatment of ovarian cancer patients,” Int. J. Cancer, 103, No. 3, 194–199 (2003).CrossRefGoogle Scholar
  25. 25.
    T. K. Kiang, P. C. Ho, M. R. Anari, et al., “Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype,” Toxicol. Sci., 94, No. 2, 261–271 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • N. A. Shnaider
    • 1
  • D. A. Sychev
    • 2
  • M. S. Pilyugina
    • 1
  • D. V. Dmitrenko
    • 1
  • E. N. Bochanova
    • 1
  • E. A. Shapovalova
    • 1
  1. 1.V. F. Voino-Yasenetskii Krasnoyarsk State Medical UniversityKrasnoyarskRussia
  2. 2.I. M. Sechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations