Advertisement

Neuroscience and Behavioral Physiology

, Volume 40, Issue 7, pp 745–756 | Cite as

Cytogenetic, Molecular-Cytogenetic, and Clinical-Genealogical Studies of the Mothers of Children with Autism: A Search for Familial Genetic Markers for Autistic Disorders

  • S. G. Vorsanova
  • V. Yu. Voinova
  • I. Yu. Yurov
  • O. S. Kurinnaya
  • I. A. Demidova
  • Yu. B. Yurov
Article

State-of-the-art cytogenetic and molecular-cytogenetic methods for studying human chromosomes were used to analyze chromosomal anomalies and variants in mothers of children with autistic disorders and the results were compared with clinical-genealogical data. These investigations showed that these mothers, as compared with a control group, showed increases in the frequencies of chromosomal anomalies (mainly mosaic forms involving chromosome X) and chromosomal heteromorphisms. Analysis of correlations of genotypes and phenotypes revealed increases in the frequencies of cognitive impairments and spontaneous abortions in the mothers of children with autism with chromosomal anomalies, as well as increases in the frequencies of mental retardation, death in childhood, and impairments to reproductive function in the pedigrees of these women. There was a high incidence of developmental anomalies in the pedigrees of mothers with chromosomal variants. These results lead to the conclusion that cytogenetic and molecular-cytogenetic studies of mothers and children with autism should be regarded as obligatory in terms of detecting possible genetic causes of autism and for genetic counseling of families with autistic children.

Key words

autism genetics of autism chromosomal anomalies chromosomal variants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Bashina, Autism in Childhood, [in Russian], Meditsina, Moscow (1999).Google Scholar
  2. 2.
    S. G. Vorsanova, I. A. Demidova,V. Yu. Ulas, et al, “Cytogenetic and molecular cytogenetic diagnosis of Rett’s syndrome in children,” Zh. Nevrol. Psikhiat., 98, No. 4, 53–56 (1998).Google Scholar
  3. 3.
    S. V. Vorsanova and Yu. B. Yurov, “Molecular cytogenetic pre- and postnatal diagnosis of chromosomal pathology,” Vestn. Ros. Akad. Med. Nauk., 11, 12–15 (1999).Google Scholar
  4. 4.
    S. G. Vorsanov,Yu. B. Yurov, and V. N. Chernyshov, Medical Genetics [in Russian], Medpraktika-M, Moscow (2006).Google Scholar
  5. 5.
    S. G. Vorsanova, I. Yu. Yurov, I. A. Demidova, et al., “Variability in the heterochromatin regions of chromosomes and chromosomal anomalies in children with autism: identification of genetic markers for autistic disorders,” Zh. Nevrol. Psikhiat., 106, No. 6, 52–57 (2006).Google Scholar
  6. 6.
    S. G. Vorsanov, I,Yu. Yurov, I. V. Soloviev, and Yu. B. Yurov, Heterochromatin Regions of Chromosomes in Humans: Clinical-Biological Aspects [in Russian], Medpraktika-M, Moscow (2008).Google Scholar
  7. 7.
    N. L. Gorbachevskaya and L. P. Yakupova, “Characteristics of the EEG pattern in children with different types of autistic disorders,” in: Autism in Childhood [in Russian], Meditsina, Moscow (1999), pp. 131–170.Google Scholar
  8. 8.
    I. A. Demidova and S. G. Vorsanova, “Cytological and molecular polymorphism in human chromosomes,” Med. Genetika Eksperim. Info., 12, 1–8 (1990).Google Scholar
  9. 9.
    A. A. Prokofieva-Belgovskaya, Heterochromatin Regions of Chromosomes [in Russian], Nauka, Moscow (1986).Google Scholar
  10. 10.
    I. V. Soloviev,Yu. B. Yurov, S. G. Vorsanov, et al., “Studies of alphasatellite DNA in cosmid libraries specific for chromosomes 13, 21, and 22 using in situ fluorescent hybridization,” Genetika, 11, 1470–1479 (1998).Google Scholar
  11. 11.
    Yu. B. Yurov and S. G. Vorsanov, “Molecular cytogenetic studies of chromosomal anomalies and impairments in neuromental diseases: the search for biological markers for diagnosis,” Vestn. Ros. Akad. Med. Nauk., 7, 26–31 (2001).Google Scholar
  12. 12.
    I. Yu. Yurov, S. G. Vorsanov, and Yu. B. Yurov, “Nervous and mental diseases in children and mutations in the MECP2 regulatory gene,” Zh. Nevrol. Psikhiat., 10, 73–80 (2004).Google Scholar
  13. 13.
    I. Yu. Yurov, S. G. Vorsanov, V. Yu. Voinova-Ulas, et al., “Epigenetic studies of Rett syndrome as a suitable model for autistic disorders,” Zh. Nevrol. Psikhiat., 105, No. 7, 4–11 (2005).Google Scholar
  14. 14.
    I. Yu. Yurov, S. G. Vorsanov, and Yu. B. Yurov, “Mental fatigue linked with the X chromosome, epigenetic phenomena, and autism,” Psikhiatriya, 13, No. 1, 55–65 (2005).Google Scholar
  15. 15.
    I. Yu. Yurov, S. G. Vorsanov, and Yu. B. Yurov, “Molecular neurocytogenetics: genome instability in mental diseases,” Psikhiatriya, 28, No. 4, 36–43 (2007).Google Scholar
  16. 16.
    H. Asperger, “Die ‘autistischen Psychopathen’ im Kindesalter,” Arch. Psychiat. Nervenkr., 117, 76–136 (1944).CrossRefGoogle Scholar
  17. 17.
    E. Bacchelli, F. Blasi, M. Biondillo, et al., “International molecular genetic study of autism consortium (IMGSAC). Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene,” Mol. Psychiat., 8, No. 11, 916–924 (2003).CrossRefGoogle Scholar
  18. 18.
    E. Bleuler, “Das autistische Denken,” in: Jahrbuch für Psychoanalytische und Psychopathologische Forschungen, Deuticke, Leipzig and Vienna (1912), Vol. 4, pp. 1–39.Google Scholar
  19. 19.
    D. Castermans, V. Willquet, J. Steyert, et al., “Chromosomal anomalies in individuals with autism: a strategy towards the identification of genes involved in autism,” Autism, 8, 141–161 (2004).CrossRefPubMedGoogle Scholar
  20. 20.
    C. M. Freitag, “The genetics of autistic disorders and its clinical relevance: a review of the literature,” Mol. Psychiatr., 12, No. 1, 2–22 (2007).CrossRefGoogle Scholar
  21. 21.
    D. Goldberg, K. Bridges, P. Duncan-Jones, and D. Grayson, “Detecting anxiety and depression in general medical settings,” Brit. Med. J., 297, 897–899 (1988).CrossRefPubMedGoogle Scholar
  22. 22.
    A. Halder, M. Jain, M. Kabra, and N. Gupta, “Mosaic 22q11.2 microdeletion syndrome: diagnosis and clinical manifestations of two cases,” Mol. Cytogenet., 1, 18 (2008).CrossRefPubMedGoogle Scholar
  23. 23.
    J. R. Hughes, “A review of recent reports on autism: 1000 studies published in 2007,” Epilepsy Behav., 13, No. 3, 425–437 (2008).CrossRefPubMedGoogle Scholar
  24. 24.
    I. Y. Iourov, I. V. Soloviev, S. G. Vorsanova, et al., “An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics,” J. Histochem. Cytochem., 53, 401–408 (2005).CrossRefPubMedGoogle Scholar
  25. 25.
    I. Y. Iourov, S. G. Vorsanova, and Y. B. Yurov, “Chromosomal variations in mammalian neural cells: known facts and attractive hypotheses,” Int. Rev. Cytol., 249, 143–191 (2006).CrossRefPubMedGoogle Scholar
  26. 26.
    I. Y. Iourov, S. G. Vorsanova, and Y. B. Yurov, “Intercellular genomic (chromosomal) variations resulting in somatic mosaicism: mechanisms and consequences,” Curr. Genomics, 7, 435–446 (2006).CrossRefGoogle Scholar
  27. 27.
    I. Y. Iourov, S. G. Vorsanova, and Y. B. Yurov, “Molecular cytogenetics and cytogenomics of brain diseases,” Curr. Genomics, 7, No. 9, 452–465 (2008).CrossRefGoogle Scholar
  28. 28.
    I. Y. Iourov, S. G. Vorsanova, and Y. B. Yurov, “Chromosomal mosaicism goes global,” Mol. Cytogenet., 1, 26 (2008).CrossRefPubMedGoogle Scholar
  29. 29.
    I. Y. Yourov, Y. B. Yurov, and S. G. Vorsanova, “Mosaic X chromosome aneuploidy can help to explain the male-to-female ratio in autism,” Med. Hypotheses, 70, 464 (2008).CrossRefGoogle Scholar
  30. 30.
    L. Kanner, “Autistic disturbances of affective contact,” Nerv. Child, 2, 217–250 (1943).Google Scholar
  31. 31.
    R. Muhle, S. V. Trentacoste, and I. Rapin, “The genetics of autism,” Pediatrics, 113, No. 5, e472–486 (2004).CrossRefPubMedGoogle Scholar
  32. 32.
    P. T. Ozand, A. Al-Odaib, H. Merza, and A. Al Harbi, “Autism: a review,” J. Pediat. Neurol., 1, 55–67 (2003).Google Scholar
  33. 33.
    I. Rapin, “Autism,” New Eng. J. Med., 337, 97–104 (1997).CrossRefPubMedGoogle Scholar
  34. 34.
    I. Rapin and R. F. Tuchman, “Autism: definition, neurobiology, screening, diagnosis,” Pediat. Clin. North Am., 55, No. 5, 1129–1146 (2008).CrossRefGoogle Scholar
  35. 35.
    I. V. Soloviev, Y. B. Yurov, S. G. Vorsanova, and P. Malet, “Microwave activation of fluorescence in situ hybridization: a novel method for rapid chromosome detection and analysis,” Focus, 16, 115–116 (1994).Google Scholar
  36. 36.
    S. G. Vorsanova, I. A. Demidova, V. Y. Ulas, et al., “Cytogenetic and molecular-cytogenetic investigation of Rett syndrome. Analysis of 31 cases,” NeuroReport, 7, 187–189 (1996).CrossRefGoogle Scholar
  37. 37.
    S. G. Vorsanova, I. Y. Yourov, and Yurov, “Neurological, genetic and epigenetic features of Rett syndrome,” J. Pediat. Neurol., 2, 179–190 (2004).Google Scholar
  38. 38.
    S. G. Vorsanova, I. Y. Yurov, I. A. Demidova, et al., “Variability in the heterochromatin regions of the chromosomes and chromosomal anomalies in children with autism: identification of genetic markers of autistic spectrum disorders,” Neurosci. Behav. Physiol., 37, No. 6, 553–558 (2007).CrossRefPubMedGoogle Scholar
  39. 39.
    S. G. Vorsanova, I. Y. Yourov, V. Y. Voinova, et al., “Partial monosomy 7q34-qter and 21pter-q22.13 due to cryptic unbalanced translocation t(7; 21) but not monosomy of the whole chromosome 21: a case report plus review of the literature,” Mol. Cytogenet., 1, 13 (2008).CrossRefPubMedGoogle Scholar
  40. 40.
    J. A. Vorstman, M. E. Morcus, S. N. Duijff, et al., “The 22qll.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms,” J. Am. Acad. Child. Adolesc. Psychiat., 45, No. 9, 1104–1113 (2006).CrossRefGoogle Scholar
  41. 41.
    J. Xu, L. Zwaigenboum, P. Szatmari, et al., “Molecular cytogenetics of autism,” Curr. Genomics, 4, 347–368 (2004).CrossRefGoogle Scholar
  42. 42.
    Y. B. Yurov, I. V. Soloviev, S. G. Vorsanova, et al., “DNA probes for pre- and postnatal diagnosis of chromosomal anomalies: a collection for FISH analysis,” Cesk. Pediat., 52, 550–554 (1997).Google Scholar
  43. 43.
    Y. B. Yurov, S. G. Vorsanova, I. Y. Iourov, et al., “Unexplained autism is frequently associated with low-level mosaic aneuploidy,” J. Med. Genet., 44, 521–525 (2007).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • S. G. Vorsanova
    • 1
    • 2
  • V. Yu. Voinova
    • 2
  • I. Yu. Yurov
    • 1
  • O. S. Kurinnaya
    • 1
    • 2
  • I. A. Demidova
    • 1
    • 2
  • Yu. B. Yurov
    • 1
  1. 1.Scientific Center for Mental HealthRussian Academy of Medical SciencesMoscowRussia
  2. 2.Moscow Research Institute of Pediatrics and Child SurgeryMoscowRussia

Personalised recommendations