Neuroscience and Behavioral Physiology

, Volume 39, Issue 3, pp 231–240 | Cite as

Respiratory responses to microinjections of leptin into the solitary tract nucleus

  • A. N. Inyushkin
  • E. M. Inyushkina
  • N. A. Merkulova
Article

The regulatory peptide leptin has a respiratory stimulating effect along with its well known hypothalamic effects. The present study, performed on anesthetized rats, addressed respiratory responses to microinjections of 10−10−10−4 M leptin into the solitary tract nucleus, which contains a high concentration of leptin receptors. Injections of 10−8−10−4 M leptin led to stimulation of respiration, inducing a dose-dependent increase in the level of pulmonary ventilation and an increase in respiratory volume, accompanied by an increase in bioelectrical activity in the inspiratory muscles; 10−6 M leptin also induced a transient increase in respiratory rate due to shortening of inhalation and exhalation. A characteristic feature of the response was the appearance of “sighs” – deep, prolonged inhalations accompanied by increased volley activity on the electromyograms of the inspiratory muscles and lengthening of the subsequent intervolley interval. These leptin effects, along with data on the high concentrations of specific leptin receptors (ObRb) in the solitary tract nucleus, suggested that endogenous leptin has a role in controlling respiration at the level of the dorsal segment of the respiratory center.

KEY WORDS

regulation of respiration respiratory center solitary tract nucleus leptin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. N. Glazkova and A. N. Inyushkin, “Respiratory reactions to microinjection of bombesin into the solitary tract nucleus and their mechanisms,” Ros. Fiziol. Zh. im. I. M. Sechenova, 91, No. 5, 521–529 (2005).Google Scholar
  2. 2.
    A. N. Inyushkin, “Respiratory and hemodynamic reactions in rats to microinjection of opioids into the solitary tract nucleus,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, No. 3, 112–121 (1997).Google Scholar
  3. 3.
    A. N. Inyushkin and N. A. Merkulova, “Effects of microinjection of thyroliberin into the solitary tract nucleus area on measures of respiration and blood circulation,” Ros. Fiziol. Zh. im. I. M. Sechenova, 79, No. 11, 52–58 (1994).Google Scholar
  4. 4.
    W. A. Banks, “The many lives of leptin,” Peptides, 25, 331–338 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    A. L. Bianchi, M. Denavit-Saubie, and J. Champagnat, “Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters,” Physiol. Rev., 75, 1–45 (1995).PubMedGoogle Scholar
  6. 6.
    M. Buyse, M.-L. Ovesjo, H. Goiot, S. Guilmeau, G. Peranzi, L. Moizo, F. Walker, M. J. M. Lewin, B. Mesiter, and A. Bado, “Expression and regulation of leptin receptor proteins in afferent and efferent neurons of the vagus nerve,” Eur. J. Neurosci., 14, 64–72 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    V. C. Chitravanshi, A. Kachroo, and H. N. Sapru, “A midline area in the nucleus commissuralis of NTS mediates the phrenic nerve responses to carotid chemoreceptor stimulation,” Brain Res., 662, 127–133 (1994).PubMedCrossRefGoogle Scholar
  8. 8.
    C. F. Elias, J. F. Kelly, C. E. Lee, R. S. Ahima, D. J. Brucker, C. B. Saper, and J. K. Elmquist, “Chemical characterization of leptin-activated neurons in the rat brain,” J. Comp. Neurol., 423, 261–281 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    K. L. J. Ellacott, I. G. Halatchev, and R. D. Cone, “Characterization of leptin-responsive neurons in the caudal brainstem,” Endocrinol., 147, 3190–3195 (2006).CrossRefGoogle Scholar
  10. 10.
    J. K. Elquist and J. S. Filer, “The fat-brain axis enters a new dimension,” Science, 304, 63–64 (2004).CrossRefGoogle Scholar
  11. 11.
    J. Florez, A. Mediavilla, and A. Pazos, “Respiratory effects of β-endorphin, D-Ala2-metenkephalinamide, and metenkephalin injected into the lateral ventricle and the pontomedullary subarachnoid space,” Brain Res., 199, 197–206 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    J. M. Friedman and J. L. Halaas, “Leptin and the regulation of body weight in mammals,” Nature, 395, 763–770 (1998).PubMedCrossRefGoogle Scholar
  13. 13.
    F. J. Golder, P. W. Davenport, R. D. Johnson, P. J. Reier, and D. C. Bolser, “Augmented breath phase volume and timing relationships in the anesthetized rat,” Neurosci. Lett., 373, 89–93 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    M. A. Haxhiu, J. Mitra, V. E. Lunteren, N. R. Prabhakar, and N. S. Cherniack, “Influence of central chemoreceptor afferent inputs on respiratory muscle activity,” Amer. J. Physiol., 249, R266–R273 (1985).PubMedGoogle Scholar
  15. 15.
    T. Hosai, T. Kawagishi, Y. Okuma, J. Tanaka, and Y. Nomura, “Brain stem is a direct target for leptin's action in the central nervous system,” Endocrinol., 143, 3498–3504 (2002).CrossRefGoogle Scholar
  16. 16.
    L. Huo, H. J. Grill, and C. Bjorbaek, “Divergent regulation of proopiomelanocorum neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus,” Diabetes, 55, 567–573 (2006).PubMedCrossRefGoogle Scholar
  17. 17.
    L. Huo, L. Maeng, C. Bjorbaek, and H. J. Grill, “Leptin and the control of food intake: neurons in the nucleus of the solitary tract are activated by both gastric distension and leptin,” Endocrinol., 148, 2189–2197 (2007).CrossRefGoogle Scholar
  18. 18.
    S. P. Lieske, M. Thoby-Brisson, P. Telgkamp, and J. M. Ramirez, “Reconfiguration of the neural network controlling multiple breathing patters: eupnea, sighs and gasps,” Nature Neurosci., 3, No. 6, 600–607 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    J. G. Mercer, K. M. Moar, P. A. Findlay, N. Hoggard, and C. L. Adam, “Association of leptin receptor (Ob-Rb), NPY and GLP-1 gene expression in the ovine and murine brainstem,” Regulat. Pept., 75-76, 271–278 (1998).CrossRefGoogle Scholar
  20. 20.
    J. G. Mercer, K. M. Hoar, and N. Hoggard, “Localization of leptin receptor (Ob-R) messenger ribonucleic acid in the rodent hindbrain,” Endocrinol., 139, 29–34 (1998).CrossRefGoogle Scholar
  21. 21.
    R. A. Mitchell, H. H. Loeschcke, and N. H. Massion, “Respiratory responses mediated through superficial chemosensitive areas on the medulla,” J. Appl. Physiol., 18, No. 3, 523–533 (1963).Google Scholar
  22. 22.
    H. Munzberg, M. Bjornholm, S. H. Bates, and M. G. Myers, “Leptin receptor action and mechanisms of leptin resistance,” Cell. Mol. Life Sci., 62, 642–652 (2005).PubMedCrossRefGoogle Scholar
  23. 23.
    C. P. O'Donnell, S. D. Schaub, A. S. Haines, D. I. Berkowitz, C. G. Tankersley, A. R. Schwartz, and P. L. Smith, “Leptin prevents respiratory depression in obesity,” Amer. J. Respir. Crit. Care Med., 159, 1477–1484 (1999).Google Scholar
  24. 24.
    C. P. O'Donnell, C. G. Tankersley, V. Y. Polotsky, A. R. Schwartz, and P. L. Smith, “Leptin, obesity, and respiratory function,” Respirat. Physiol., 119, 173–180 (2000).CrossRefGoogle Scholar
  25. 25.
    K. Parisian, P. Wages, A. Smith, J. Jarosz, A. Hewitt, J. C. Leiter, and J. S. Erlichman, “Ventilatory effects of gap junction blockade in the NTS in awake rats,” Respirat. Physiol. Neurobiol., 142, 127–143 (2004).CrossRefGoogle Scholar
  26. 26.
    V. Y. Polotsky, M. C. Smaldone, M. T. Scharf, J. Li, C. G. Tankersley, P. L. Smith, A. R. Schwartz, and C. P. O'Donnell, “Impact of interrupted leptin pathways on respiratory control,” J. Appl. Physiol., 96, 991–998 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    V. Y. Polotsky, J. A. Wilson, A. S. Haines, M. T. Scharf, S. E. Soutiere, C. G. Tankersley, P. L. Smith, A. R. Schwartz, and C. P. O'Donnell, “The impact of insulin-dependent diabetes on ventilatory control in the mouse,” Amer. J. Respirat. Crit. Care Med., 163, 624–632 (2001).Google Scholar
  28. 28.
    S. Shioda, H. Funahashi, S. Nakajo, T. Yada, O. Maruta, and Y. Nakai, “Immunohistochemical localization of leptin receptor in the brain,” Neurosci. Lett., 243, 41–44 (1998).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Soltysik and P. Jelen, “In rats, sighs correlate with relief,” Physiol. Behav., 85, 598–602 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    D. F. Speck and J. L. Feldman, “The effects of microstimulation and microlesions in the ventral and dorsal respiratory groups in medulla of cat,” J. Neurosci., 2, 744–757 (1982).PubMedGoogle Scholar
  31. 31.
    C. G. Tankersley, S. Kleeberger, B. Russ, A. R. Schwartz, and P. Smith, “Modified control of breathing in genetically obese (ob/ob) mice,” J. Appl. Physiol., 81, 716–723, (1996).PubMedGoogle Scholar
  32. 32.
    C. G. Tankersley, C. P. O'Donnell, M. J. Daood, J. F. Watchko, W. Mitzner, A. Schwartz, and P. Smith, “Leptin attenuates respiratory complications associated with the obese phenotype,” J. Appl. Physiol., 85, 2261–2269 (1998).PubMedGoogle Scholar
  33. 33.
    J. Wu, H. Hu, W. Shen, and C. Jiang, “Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats,” J. Membrane Biol., 197, 179–191 (2004).CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, R. Proenca, M. Maffel, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, 372, 425–432 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. N. Inyushkin
    • 1
  • E. M. Inyushkina
    • 1
  • N. A. Merkulova
    • 1
  1. 1.Samara State UniversitySamaraRussia

Personalised recommendations