Neuroscience and Behavioral Physiology

, Volume 38, Issue 8, pp 751–758 | Cite as

The hippocampus and cognitive impairments

  • É. B. Arushanyan
  • É. V. Beier


Progressive increases in the worldwide number of cases of brain diseases accompanied by cognitive impairments continually reinforce the relevance of the need for further investigation and pharmacotherapy of this type of neuromental pathology, particularly as this problem has great significance, not only in the medical sphere, but also in the social. This explains the currently extensive interest of investigators of different specialties in studies of the role of the hippocampus (HPO) in the genesis of these disorders and the possibility that nootropic substances have influences on it.


Melatonin Dentate Gyrus Entorhinal Cortex Excitatory Amino Acid Lewy Body Dementia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    É. B. Arushanyan, Therapeutic Improvement in Cognitive Brain Activity [in Russian], Stavropol’, (2004).Google Scholar
  2. 2.
    O. S. Vinogradova, The Hippocampus and Memory [in Russian], Nauka, Moscow (1975).Google Scholar
  3. 3.
    L. S. Gambaryan and I. N. Koval’, Izd. Akad. Nauk. Arm. SSR, Erevan (1973).Google Scholar
  4. 4.
    O. A. Gomazkov, “Apoptosis of neuronal structures and the role of neurotrophic growth factors. Biochemical mechanisms of the effectiveness of brain peptide preparations,” Zh. Nevrol. Psikhiat., 102, No. 7, 17–21 (2002).Google Scholar
  5. 5.
    E. I. Gusev and V. I. Skvortsova, “Glutamate neurotransmission and calcium metabolism in normal conditions and brain ischemia,” Usp. Fiziol. Nauk., 33, 80–93 (2002).PubMedGoogle Scholar
  6. 6.
    A. R. Luriya, Higher Cortical Functions and their Impairments in Local Brain Lesions [in Russian], Moscow (2000).Google Scholar
  7. 7.
    A. A. Mokrushin and L. I. Pavlinova, “Involvement of endogenous neuropeptides in controlling the functional plasticity of the brain,” Usp. Fiziol. Nauk., 32, 16–28 (2004).Google Scholar
  8. 8.
    É. N. Popova, L. B. Verbitskaya, and L. A. Kukuev, “Morphological changes in brain structures on aging in humans and animals (comparative studies),” Zh. Nevrol. Psikhiat., 86, 1860–1868 (1986).Google Scholar
  9. 9.
    K. S. Raevskii, V. G. Bashkatova, and A. F. Vanin, “The role of nitric oxide in glutamatergic brain pathology,” Vestn. Ros. Akad. Med. Nauk., 4, 11–15 (2000).Google Scholar
  10. 10.
    V. G. Skrebitskii and A. N. Chepkova, “Synaptic plasticity in relation to learning and memory,” Usp. Fiziol. Nauk., 30, 3–13 (1999).PubMedGoogle Scholar
  11. 11.
    P. K. Telushkin and A. D. Nozdrachev, “Hypoglycemia and the brain: metabolism and mechanisms of neuron damage,” Usp. Fiziol. Nauk., 30, 14–27 (1999).PubMedGoogle Scholar
  12. 12.
    S. S. Trofimov, R. U. Ostrovskaya, N. M. Smol’nikova, et al., “Correction by nooglutil of impairments to central nervous system functions evoked by prenatal alcoholization in rats,” Éksperim. Klin. Farmakol., 55, 18–21 (1992).Google Scholar
  13. 13.
    X. A. Alvarez, C. Sampedro, R. Lozano, et al., “Citicoline protects hippocampal neurons against apoptosis induced by brain beta-amyloid deposits plus cerebral hypoperfusion in rats,” Meth. Find. Exp. Clin. Pharmacol., 21, 535–540 (1999).CrossRefGoogle Scholar
  14. 14.
    N. Arai, N. Furukawa, T. Miyamal, et al., “DOPA cyclohexyl ester a competitive DOPA antagonist, protect glutamate release and resultant delayed neuron death by transient ischemia in hippocampus CA1 of conscious rats,” Neurosci. Lett., 299, 213–216 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Arciniegas, L. Adler, L. Topcoff, et al., “Attention and memory dysfunction after traumatic brain injury: cholinergic mechanisms, sensory gating, and a hypothesis for further investigation,” Brain Inj., 13, 1–13 (1999).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Bastianetto and R. Quirion, “EG 761 is a neuroprotective agent against beta-amyloid toxicity,” Cell Mol. Biol., 48, 643–697 (2002).Google Scholar
  17. 17.
    G. Baydas, A. Yasar, and M. Tuzcu, “Comparison of the impact of melatonin on chronic ethanol-induced learning and memory impairment between young and aged rats,” J. Pineal Res., 39, 346–352 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    J. T. Becker, S. W. Davis, K. Hayashi, et al., “Three-dimensional patterns of hippocampal atrophy in mild cognitive impairment,” Arch. Neurol., 63, 97–101 (2006).PubMedCrossRefGoogle Scholar
  19. 19.
    T. V. Bliss, G. V. Goddard, and M. Rives, “Reduction of long-term potentiation in the dentate gyrus of the rat following selective depletion of monoamines,” J. Physiol., 334, 475–491 (1983).PubMedGoogle Scholar
  20. 20.
    C. R. Bramcham, T. Southard, Y. Sorway, et al., “Unilateral LTP triggers bilateral increases in hippocampal neurotrophin and Trk receptor mRNA expression in behaving rats: evidence for interhemispheric communication,” J. Comp. Neurol., 368, 371–382 (1996).CrossRefGoogle Scholar
  21. 21.
    E. B. Burgard and J. M. Sarwey, “Muscarinic receptors activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus,” Neurosci. Lett., 116, 34–39 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    K. B. Chen, A. M. Lin, and T. N. Ckiu, “Oxidative injury to the locus coerulus of rat brain,” J. Pineal Res., 35, 109–117 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Crottaz-Herbette, K. M. Lau, and G. H. Glower, “Hippocampal involvement in defection of deviant auditory and visual stimuli,” Hippocampus, 15, 132–139 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Cuzzocrea, G. Costantino, E. Gitto, et al., “Protective effects of melatonin in ischemic brain injury,” J. Pineal Res., 29, 217–227 (2000).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Daumas, H. Halley, and B. Frances, “Encoding, consolidation and retrieval of contextual memory: differential involvement of dorsal CA3 and CA1 hippocampal subregions,” Learn. Mem., 12, 375–382 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    M. DeButte, T. Fortin, and B. A. Pupas, “Pinealectomy: behavioral and neuropathological consequences in a chronic cerebral hypoperfusion model,” Neurobiol. Aging, 23, 309–317 (2002).CrossRefGoogle Scholar
  27. 27.
    R. J. Dempsey and V. L. Raghavendra Rao, “Cytidinediphosphocholine treatment to decrease traumatic brain injury-induced hippocampal neuronal death, cortical contusion volume, and neurological dysfunction in rats,” J. Neurosurg., 8, 67–73 (2003).Google Scholar
  28. 28.
    T. Den Heijer, M. J. Geerlings, F. E. Hoobeek, et al., “Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitive intact elderly people,” Arch. Gen. Psychiat., 63, 57–62 (2006).CrossRefGoogle Scholar
  29. 29.
    K. T. Dineley, M. Westerman, D. Bui, et al., “β-Amyloid activates the mitogen-activated protein kinase cascade via hippocampal α7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer disease,” Neurosci., 21, 4125–4153 (2001).Google Scholar
  30. 30.
    S. Dore, S. Bastianetto, and S. Kar, “Protective and rescuing abilities of IGF-1 and some putative free radical scavengers against β-amyloid-induced toxicity in neurons,” Ann. N.Y. Acad. Sci., 890, 356–364 (1999).PubMedCrossRefGoogle Scholar
  31. 31.
    P. Eder, J. Reinprecht, E. Scheiner, et al., “Increased density of glutamate receptor subunit due to cerebrolysin treatment: an immunohistochemical study on aged rats,” Histochem. J., 33, 605–612 (2001).PubMedCrossRefGoogle Scholar
  32. 32.
    Y. El-Sherif, M. V. Hogan, and J. Tesoriero, “Factors regulating the influence of melatonin on hippocampal evoked potentials: comparative studies on different strains of mice,” Brain Res., 945, 191–201 (2002).PubMedCrossRefGoogle Scholar
  33. 33.
    G. N. El-Sokkary, E. S. Kamed, and R. J. Reiter, “Prophylactic effect of melatonin in reducing lead-induced neurotoxicity in the rat,” Cell Mol. Biol. Lett., 8, 461–470 (2003).PubMedGoogle Scholar
  34. 34.
    B. Engelsen, “Neurotransmitter glutamate and its clinical importance,” Acta Neurol. Scand., 74, 337–355 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    Y. L. Esparza, M. Gomez, M. Romeu, et al., “Aluminium-induced pro-oxidant effects in rats: protective role of exogenous melatonin,” J. Pineal Res., 35, 32–39 (2006).CrossRefGoogle Scholar
  36. 36.
    Z. Feng, Y. Chang, Y. Cheng, et al., “Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP695 transgenic mouse of Alzheimer’s disease,” J. Pineal Res., 37, 129–136 (2004).PubMedCrossRefGoogle Scholar
  37. 37.
    D. G. Flood, S. J. Buell, and G. L. Horowitz, “Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia,” in: Aging, R. D. Terry and S. Gerson (eds.), Raven Press, New York (1976), Vol. 3, pp. 205–216.Google Scholar
  38. 38.
    A. G. Foster, R. Gill, Y. A. Kemp, et al., “Systemic administration of MK-801 prevents N-methyl-D-aspartate-induced neuronal degeneration in rat brain,” Neurosci. Lett., 76, 307–311 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    U. Frey, H. Mattkies, and H. G. Reymann, “The effect of dopaminergic Dl receptor blockade during tetanization on the expression of long-term potentiation in the rat CA region in vitro,” Neurosci. Lett., 129, 111–114 (1991).PubMedCrossRefGoogle Scholar
  40. 40.
    K. M. Frick, S. M. Fernandez, and S. C. Bulinski, “Estrogen replacement improves spatial reference memory and increases hippocampal synaptophysin in aged female mice,” Neurosci., 115, 547–548 (2002).CrossRefGoogle Scholar
  41. 41.
    K. Fukui, H. Takatsu, T. Shinakai, et al., “Appearance of amyloid beta-like substances and delayed-type apoptosis in rat hippocampus CA1 region through aging and oxidative stress,” J. Alzheimer’s Dis., 8, 299–309 (2005).Google Scholar
  42. 42.
    N. Galeotti, C. Chelardini, A. Pittaluga, et al., “AMPA-receptor activation is involved in the antiamnesic effect of DM 232 (unipharm) and DM 235 (sunipharm),” Naunyn-Schmiedeberg’s Arch. Pharmacol., 368, 538–545 (2003).CrossRefGoogle Scholar
  43. 43.
    M. G. Giovannini, A. Rakovs, R. S. Benton, et al., “Effect of novelty and habituation on acetylcholine, GABA and glutamate release from the frontal cortex and hippocampus of freely moving rats,” Neurosci., 106, 43–53 (2001).CrossRefGoogle Scholar
  44. 44.
    W. A. Gottschalk, H. Jiang, N. Tartaglia, et al., “Signaling mechanism mediating BDNF modulation of synaptic plasticity in the hippocampus,” Learn. Mem., 6, 243–256 (1999).PubMedGoogle Scholar
  45. 45.
    A. Gunten, E. Kovari, T. Bussiere, et al., “Cognitive impact of neuronal pathology in the entorhinal cortex and CA1 field in Alzheimer’s disease,” Neurobiol. Aging, 27, 270–277 (2006).CrossRefGoogle Scholar
  46. 46.
    R. E. Hartman, J. M. Lee, and G. J. Zipfel, “Characterizing learning deficits and hippocampal neuron loss following transient global cerebral ischemia in rats,” Brain Res., 1043, 48–56 (2005).PubMedCrossRefGoogle Scholar
  47. 47.
    C. Hock, K. Heese, and C. Hulette, “Region-specific neurotropin imbalances in Alzheimer disease: decreased levels of nerve growth factor in hippocampus and cortical areas,” Arch. Neurol., 57, 846–851 (2000).PubMedCrossRefGoogle Scholar
  48. 48.
    B. L. Holman, R. Z. Gibson, C. Hill, et al., “Muscarinic acetylcholine receptors in Alzheimer’s disease,” YAMA, 254, 3063–3066 (1995).Google Scholar
  49. 49.
    H. Hortage, “AFG 4A-induced brain damage and its relation to dementia,” J. Neurol. Transm., 44, 245–257 (1994).Google Scholar
  50. 50.
    S. Koizumi, M. D. Bootman, L. K. Bobanovic, et al., “Characterization of elementary Ca2+ release signals in NGF-differentiated PC 12 cells and hippocampal neurons,” Neuron, 21, 125–137 (1999).CrossRefGoogle Scholar
  51. 51.
    G. Letechipia-Vallejo, J. Gonzales-Burgos, and M. Cervantes, “Neuroprotective effect of melatonin on brain damage induced by acute global cerebral ischemia in rats,” Arch. Med. Res., 32, 186–192 (2001).PubMedCrossRefGoogle Scholar
  52. 52.
    C. P. Maurizi, “Loss of intraventricular fluid melatonin can explain the neuropathology of Alzheimer’s disease,” Med. Hypotheses, 49, 153–158 (1997).PubMedCrossRefGoogle Scholar
  53. 53.
    S. M. McCann, “The nitric oxide hypothesis of brain aging,” Exp. Gerontol., 32, 431–440 (1997).PubMedCrossRefGoogle Scholar
  54. 54.
    L. D. McLean, “Contrasting functions of limbic and neocortical systems of the brain and their relevance to psychophysiological aspects of medicine,” Amer. J. Med., 25, 611–628 (1958).CrossRefGoogle Scholar
  55. 55.
    S. Mennerick, V. Jeviovic-Todorovic, and S. Todorovic, “Effects of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures,” Neurosci., 18, 9716–9726 (1998).Google Scholar
  56. 56.
    W. E. Muller, K. Scheuer, and S. Stoll, “Glutamatergic treatment strategies for age-related memory disorders,” Life Sci., 55, 2147–2153 (1994).PubMedCrossRefGoogle Scholar
  57. 57.
    A. Nitta, Y. Ogihara, J. Onishi, et al., “Oral administration of propentofylline, a stimulator of nerve growth factor (NgF) synthesis recovers cholinergic neuronal dysfunction induced by infusion of anti-NgF antibody in rat septum,” Behav. Brain Res., 83, 201–204 (1997).PubMedCrossRefGoogle Scholar
  58. 58.
    Y. W. Olney, “Excitatory amino acids and neuropsychiatric disorders,” in: Excitatory Amino Acids Transmission, J. Phicks et al. (eds.), A. R. Liss, New York (1987), pp. 217–224.Google Scholar
  59. 59.
    D. Ongur, M. Zalesak, A. P. Weiss, et al., “Hippocampal activation during processing of previously seen visual stimulus pairs,” Psychiat. Res., 193, 191–198 (2005).Google Scholar
  60. 60.
    O. P. Ottersen, “Excitatory amino acid neurotransmitters: anatomical systems,” in: Excitatory Amino Acid Antagonists, B. S. Meldrum (ed.), Blackwell Scientific, Oxford (1991), pp. 24–38.Google Scholar
  61. 61.
    W. A. Pulsinelli, “Selective neuronal vulnerability: morphological and molecular characteristics,” Progr. Brain Res., 53, 29–37 (1985).CrossRefGoogle Scholar
  62. 62.
    S. W. Scheff, D. A. Price, R. R. Hicks, et al., “Synaptogenesis in the hippocampal CA1 field following traumatic brain injury,” J. Neurotrauma, 22, 719–732 (2005).PubMedCrossRefGoogle Scholar
  63. 63.
    S. W. Scheff, D. A. Price, F. A. Schmidt, et al., “Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment,” Neurobiol. Aging, 26, 150–155 (2005).Google Scholar
  64. 64.
    U. A. Scherman and E. Friedman, “Pre-and post-synaptic cholinergic dysfunction imaged rodent brain regions: new findings and an interpretative review,” Int. J. Dev. Neurosci., 8, 689–708 (1990).CrossRefGoogle Scholar
  65. 65.
    L. Schwyzer, J. M. Mateos, M. Alegg, et al., “Psychological and morphological plasticity induced by chronic treatment with NT-4/5 in hippocampal slice cultures,” Eur. J. Neurosci., 16, 1939–1948 (2002).PubMedCrossRefGoogle Scholar
  66. 66.
    J. X. Shen, W. Wei, J. Young, et al., “Improvement of melatonin to the learning and memory impairment induced by amyloid peptide 25–35 in elder rats,” Acta Pharmacol. Sin., 20, No. 9, 797–803 (2001).Google Scholar
  67. 67.
    Y. X. Shen, S. Y. Su, W. Wei, et al., “Melatonin reduced memory changes and neural oxidative damage in mice treated with D-galactose,” J. Pineal Res., 32, 173–178 (2002).PubMedCrossRefGoogle Scholar
  68. 68.
    Y. X. Shen, S. Y. Su, W. Wei, et al., “The protective effects of melatonin from oxidative damage induced by amyloid β-peptide 23–35 in middle-aged rats,” J. Pineal Res., 32, 85–89 (2002).PubMedCrossRefGoogle Scholar
  69. 69.
    K. Shiozaki, E. Iseki, and H. Hino, “Distribution of m1 muscarinic acetylcholine receptors in the hippocampus of patients with Alzheimer’s disease and dementia with Lewy bodies — an immunohistochemical study,” J. Neurol. Sci., 193, 23–28 (2001).PubMedCrossRefGoogle Scholar
  70. 70.
    G. Simic, P. J. Lucassen, Z. Krsnik, et al., “nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer’s disease,” Exp. Neurol., 165, 12–26 (2000).PubMedCrossRefGoogle Scholar
  71. 71.
    H. S. Soininen, K. Partanen, A. Pitkonen, et al., “Volumetric MRI analysis of the amygdale and the hippocampus in subjects with age-associated memory impairment: correlation to visual and verbal memory,” Neurobiology, 44, 1660–1668 (1994).Google Scholar
  72. 72.
    P. Szot, S. S. White, L. H. Greenup, et al., “Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies,” J. Neurosci., 26, 467–478 (2006).PubMedCrossRefGoogle Scholar
  73. 73.
    H. Tanaka, A. Katoh, K. Oguro, et al., “Disturbance of hippocampal long-term potentiation after transient ischemia in GFAP deficient mice,” J. Neurosci. Res., 67, 11–20 (2002).PubMedCrossRefGoogle Scholar
  74. 74.
    J. Tang, K. Yamada, Y. Kanou, et al., “Spatiotemporal expression of BDNF in the hippocampus induced by the continuous intracerebroventricular infusion of beta-amyloid in rats,” Brain Res. Mol. Brain Res., 80, 188–197 (2000).PubMedCrossRefGoogle Scholar
  75. 75.
    F. Tang, S. Nag, and S. Y. Shiu, “The effects of melatonin and Ginkgo biloba extract on memory loss and choline acetyltransferase activities in the brain of rats infused intracerebroventricularly with β-amyloid 1-40,” Life Sci., 71, 2625–2631 (2002).PubMedCrossRefGoogle Scholar
  76. 76.
    K. Uchida, M. Samejima, and A. Okabe, “Neuroprotective effects of melatonin against anoxia/aglycemia stress, as assessed by synaptic potentials and superoxide production in rat hippocampal slices,” J. Pineal Res., 37, 215–222 (2004).PubMedCrossRefGoogle Scholar
  77. 77.
    L. A. Vande Pol, A. Hensel, and F. Barkhal, “Hippocampal atrophy in Alzheimer’s disease: age matters,” Neurobiology, 66, 236–238 (2006).CrossRefGoogle Scholar
  78. 78.
    H. Van Praage, Y. Schubert, and X. Zhao, “Exercise enhances learning and hippocampal neurogenesis in aged mice,” J. Neurosci., 25, 8680–8685 (2005).CrossRefGoogle Scholar
  79. 79.
    K. E. Vogt and W. G. Roger, “Cholinergic modulation of excitatory synaptic transmission in the CA3 area of the hippocampus,” J. Neurosci., 21, 75–83 (2001).PubMedGoogle Scholar
  80. 80.
    C. A. Wilson and J. Hanin, “Brain-derived factor induced stimulation of septal choline acetyltransferase activity in ethylcholine mustard aziridinium treated rats,” Neurosci. Lett., 229, 149–152 (1997).CrossRefGoogle Scholar
  81. 81.
    B. M. Witgen, J. Lifschitz, M. L. Smith, et al., “Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: a systems, network and cellular evaluation,” Neurosci., 133, 1–15 (2005).CrossRefGoogle Scholar
  82. 82.
    M. Wu, T. Hajszan, and C. Leranth, “Nicotine recruits a local glutamatergic circuit to excite septohippocampal GABA-ergic neurons,” Eur. J. Neurosci., 18, 1156–1168 (2003).Google Scholar
  83. 83.
    J. Yamashita, Y. Kataoka, Y. Sakurai-Yamashita, et al., “Involvement of glial endothelin/nitric oxide in delayed neuronal death of rat hippocampus after transient forebrain ischemia,” Cell. Mol. Neurobiol., 20, 541–551 (2000).PubMedCrossRefGoogle Scholar
  84. 84.
    C. L. Yen, M. H. March, R. B. Meeker, et al., “Choline deficiency induces apoptosis in primary cultures of fetal neurons,” FASEB J., 15, 1704–1710 (2001).PubMedCrossRefGoogle Scholar
  85. 85.
    S. Yoshimura, Y. Tagaki, J. Harada, et al., “FGF regulation of neurogenesis in adult hippocampus after brain injury,” Proc. Natl. Acad. Sci. USA, 98, 5874–5879 (2001).PubMedCrossRefGoogle Scholar
  86. 86.
    J. Zhang, Y. D. Guo, S. H. Xing, et al., “The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils,” Yao Xue Xue Bao, 37, 329–333 (2002).PubMedGoogle Scholar
  87. 87.
    Z. Zhang and C. X. Yu, “Effect of melatonin on learning and memory impairment induced by aluminium chloride and its mechanism,” Yao Xue Xue Bao, 37, 682–686 (2002).PubMedGoogle Scholar
  88. 88.
    L. R. Zhao, A. Risedal, A. Wojcik, et al., “Enriched environment influences brain-derived neurotropic factor levels in rat forebrain after focal stroke, Neurosci. Lett., 305, 169–172 (2001).PubMedCrossRefGoogle Scholar
  89. 89.
    Y. Zhu, C. Culmsee, and S. Roth-Eichhorn, “β2-Adrenoreceptor stimulation enhances latent transforming growth factor-b-binding protein-1 and transforming growth factor-b1 expression in rat hippocampus after transient forebrain ischemia,” Neurosci., 107, 593–602 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • É. B. Arushanyan
    • 1
  • É. V. Beier
    • 1
  1. 1.Stavropol’ Medical AcademyStavropol’Russia

Personalised recommendations