Neuroscience and Behavioral Physiology

, Volume 38, Issue 1, pp 93–98 | Cite as

The role of the neuropeptide galanin in forming type-specific behavioral characteristics

  • V. I. Lyudyno
  • I. N. Abdurasulova
  • V. M. Klimenko
Article

Abstract

Intranasal administration of a galanin receptor blocker to rats was found to change their behavioral type on being placed in an unfamiliar environment, with decreases in movement and investigative activity and increases in the level of anxiety in the open field test. The basal level of expression of the galanin precursor mRNA in the anterior hypothalamus was significantly higher in rats with the active type of behavior in the open field test. In conditions of galanin receptor blockade, there was also a faster increase in the serum corticosterone level in response to a stress situation (forced swimming test), which was accompanied by a reduction in the immobilization time. These data support the involvement of galanin in the formation of individual-typological behavioral characteristics and demonstrate its important role in adaptation to stress.

Key Words

galanin individual behavior behavioral strategy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Koplik, R. M. Salieva, and A. V. Gorbunova, “The open field test as a predictor of criteria for resistance to emotional stress in Wistar rats,” Zh. Vyssh. Nerv. Deyat., 45, No. 4, 775–781 (1995).Google Scholar
  2. 2.
    M. G. Pshennikova, “The phenomenon of stress. Emotional stress and its role in pathology,” Pat. Fiziol. Éksperim. Ter., 2, 24–31 (2000).Google Scholar
  3. 3.
    E. V. Sidorenko, Methods of Mathematical Analysis in Psychology [in Russian], Rech’, St. Petersburg (2004).Google Scholar
  4. 4.
    K. V. Sudakov, “The individuality of emotional stress,” Zh. Nevrol. Psikhiatr. im. S. S. Korsakova, 105, No. 2, 4–12 (2005).PubMedGoogle Scholar
  5. 5.
    E. A. Yumatov, “Neurotransmitter integration of emotional excitation and the mechanisms of resistance to stress,” Vest. Ros. Akad. Med. Nauk., 11, 9–16 (1995).Google Scholar
  6. 6.
    T. Bartfai, K. Bedecs, T. Land, U. Langel, R. Bertorelli, P. Girotti, S. Consolo, X. Xu, Z. Wiesenfeld-Hallin, S. Nilsson, V. A. Pieribone, and T. Hokfelt, “M-15: high affinity chimeric peptide that blocks the neuronal actions of galanin in the hippocampus, locus coeruleus and spinal cord,” Proc. Natl. Acad. Sci. USA, 88, 10961 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Bartfai, T. Hokfelt, and U. Langel, “Galanin — a neuroendocrine peptide,” Crit. Rev. Neurobiol., 7, No. 3/4, 229–274 (1993).PubMedGoogle Scholar
  8. 8.
    S. A. Chepurnov, N. E. Chepurnova, and R. K. Berdiev, “Galanin controls excitability of the brain,” Ann. N.Y. Acad. Sci., 865, 547–0550 (1998).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Hokfelt, Z. Xu, T. Shi, K. Holmberg, and X. Zhang, “Galanin in ascending systems. Focus on coexistence with 5-hydroxytryptamine and noradrenaline,” Ann. N.Y. Acad. Sci., 863, 252–263 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    P. V. Holmes, D. C. Blanchard, R. J. Blanchard, L. S. Brady, and J. N. Crawley, “Chronic social stress increases levels of preprogalanin mRNA in the rat locus coeruleus,” Pharmacol. Biochem. Behav., 50, No. 4, 655–660 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Holmes, J. M. Kinney, C. C. Wrenn, Q. Li, R. J. Yang, L. Ma, J. Vishwanath, M. C. Saavedra, C. E. Innerfield, A. S. Jacoby, J. Shine, T. P. Iismaa, and J. N. Crawley, “GAL-R1 receptor null mutant mice display increased anxiety-like behavior specific to the elevated plus-maze,” Neuropsychopharmacol., 28, No. 6, 1031–1044 (2003).Google Scholar
  12. 12.
    A. Holmes, R. J. Yang, and J. N. Crawley, “Evaluation of an anxiety-related phenotype in galanin overexpressing transgenic mice,” J. Mol. Neurosci., 18, No. 1–2, 151–165 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    S. C. Hooi, D. M. Maiter, J. B. Martin, and J. I. Koenig, “Galaninergic mechanisms are involved in the regulation of corticotropin and thyrotropin secretion in the rat,” Endocrinol., 127, 2281–2289 (1990).CrossRefGoogle Scholar
  14. 14.
    K. Kask, U. Langel, and T. Bartfai, “Galanin — a neuropeptide with inhibitory actions,” Cell. Mol. Neurobiol., 15, No. 6, 653–672 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Kask, M. Berthold, and T. Bartfai, “Galanin receptors: involvement in feeding, pain, depression and Alzheimer’s disease,” Life Sci., 60, No. 18, 1523–1533 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Khoshbouei, M. Cecchi, S. Dove, M. Javors, and D. A. Morilak, “Behavioral reactivity to stress. Amplification of stress-induced noradrenergic activation elicits a galanin-mediated anxiolytic effect in central amygdala,” Pharmacol. Biochem. Behav., 71, No. 3, 407–417 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    G. A. Kinney, P. J. Emmerson, and R. J. Miller, “Galanin receptor-mediated inhibition of glutamate release in the arcuate nucleus of the hypothalamus,” J. Neurosci., 18, No. 10, 3489–3500 (1998).PubMedGoogle Scholar
  18. 18.
    J. M. Koolhaas, S. M. Korte, S. F. De Boer, B. J. Van Der Vegt, C. G. Van Reenen, H. Hopster, I. C. De Long, M. A. Ruis, and H. J. Blokhuis, “Coping styles in animals, current status in behavior and stress physiology,” Neurosci. Biobehav. Rev., 23, 925–935 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    V. Lioudyno, S. Tsikunov, and V. Klimenko, “The role of amygdala galanin in coping with psychological stress,” Acta Neurobiol. Exp., 65, 359 (2005).Google Scholar
  20. 20.
    L. Lundstrom, A. Elmquist, T. Bartfai, and U. Langel, “Galanin and its receptors in neurological disorders,” Neuromol. Med., 7, No. 1–2, 157–180 (2005).CrossRefGoogle Scholar
  21. 21.
    A. M. Mazarati, “Galanin and galanin receptors in epilepsy,” Neuropeptides, 38, No. 6, 331–343 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Niimi, J. Takahara, and K. Kawanishi, “Corticotropin releasing factor and galanin-containing neurons projecting to the median eminence of the rat,” Neurosci. Res., 14, 295–299 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    H. A. O’Neal, V. J. D. Hoomissen, P. V. Holmes, and R. K. Dishman, “Preprogalanin messenger RNA levels are increased in rat locus coeruleus after treadmill exercise training,” Neurosci. Lett., 299, No. 1–2, 69–72 (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Palkovits, “Stress-induced expression of co-localized neuropeptides in hypothalamic and amygdaloid neurons,” Eur. J. Pharmacol., 405, No. 1–3, 161–166 (2000).PubMedCrossRefGoogle Scholar
  25. 25.
    M. C. Pardon, G. G. Gould, A. Garcia, L. Phillips, M. C. Cook, S. A. Miller, P. A. Mason, and D. A. Morilak, “Stress reactivity of the brain noradrenergic system in three rat strains differing in their neuroendocrine and behavioral responses to stress: implications for susceptibility to stress-related neuropsychiatric disorders,” Neurosci., 115, No. 1, 229–242 (2002).CrossRefGoogle Scholar
  26. 26.
    G. Skofitsch and D. M. Jacobowitz, “Immunohistochemical mapping of galanin-like neurons in the rat central nervous system,” Peptides, 6, 509–546 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    A. H. Veenema, O. C. Meijer, E. R. De Kloet, J. M. Koolhaas, and B. G. Bohus, “Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression,” Hormones Behav., 43, 197–204 (2003).CrossRefGoogle Scholar
  28. 28.
    S. Zini, M. P. Rosen, U. Langel, T. Bartfai, and Y. Ben-Ari, “Galanin reduces release of endogenous excitatory amino acids in the rat hippocampus,” Eur. J. Pharmacol., 245, No. 1, 1–7 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. I. Lyudyno
    • 1
  • I. N. Abdurasulova
    • 1
  • V. M. Klimenko
    • 1
  1. 1.State Research Institute of Experimental MedicineRussian Academy of Medical SciencesSt. PetersburgRussia

Personalised recommendations