Neuroscience and Behavioral Physiology

, Volume 37, Issue 5, pp 505–508 | Cite as

Rhythmic electrical activity in branches of the stellate ganglion in the cat during postnatal ontogenesis

  • P. M. Maslyukov
  • A. D. Nozdrachev


Electrical activity in branches of the stellate ganglion was studied in neonatal cats and cats aged 10, 20, and 30 days and two and six months, with subsequent spectral analysis. Maturation of the pattern of the baseline rhythmic activity in branches of the ganglion differed during ontogenesis in the kittens. The neonatal period until the end of the second month of life was accompanied by an increase in the amplitude of electrical oscillations. Synchronous discharges in postganglionic fibers consisted of slow, low-amplitude oscillations at the respiratory frequency and heart rate in neonatal and 10-day-old-kittens. Synchronous spike activity with a frequency of about 10 Hz appeared from day 20 of life. The formation of the pattern of sympathetic nerve fiber discharges was complete by the second month of life.

Key words

electrical activity stellate ganglion cat ontogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. M. Maslyukov, “Connections of neurons in the cat stellate ganglion with target organs during postnatal ontogenesis,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, No. 6, 703–710 (2000).Google Scholar
  2. 2.
    P. M. Maslyukov, M. M. Fateev, and V. N. Volovenko, “The electrophysiological properties of the conducting tracts of the stellate ganglion of the cat during postnatal ontogenesis,” Ros. Fiziol. Zh. im. I. M. Sechenova, 85, No. 3, 419–429 (1999).Google Scholar
  3. 3.
    A. D. Nozdrachev, Corticosteroids and the Sympathetic Nervous System [in Russian], Leningrad (1969).Google Scholar
  4. 4.
    A. D. Nozdrachev and M. M. Fateev, The Stellate Ganglion. Structure and Function [in Russian], Nauka, St. Petersburg (2002).Google Scholar
  5. 5.
    V. I. Skok, Physiology of the Autonomic Ganglia [in Russian], Nauka, Leningrad (1970).Google Scholar
  6. 6.
    E. D. Adrian, D. W. Bronk, and G. Philips, “Discharges in mammalian sympathetic nerves,” J. Physiol., 74, 115–133 (1932).PubMedGoogle Scholar
  7. 7.
    S. M. Barman and G. L. Gebber, “Sympathetic nerve rhythm of brain stem origin,” Amer. J. Physiol., 239, R42–R47 (1980).PubMedGoogle Scholar
  8. 8.
    S. M. Barman, G. L. Gebber, and S. Zong, “The 10-Hz rhythm in sympathetic nerve discharge,” Amer. J. Physiol., 262, R1006–R1014 (1992).Google Scholar
  9. 9.
    S.C. Malpas, “The rhythmicity of sympathetic nerve activity,” Prog. Neurobiol., 56, 65–96 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    A. L. Sica and Z. A. Siddiqi, “Respiration-related features of sympathetic discharges in the developing kitten,” J. Auton. Nerv. Syst., 44, 77–84 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    A. L. Sica, B. W. Hundley, and P. M. Gootman, “Postganglionic sympathetic discharge in neonatal swine,” Ped. Res., 39, 85–89 (1996).CrossRefGoogle Scholar
  12. 12.
    A. L. Sica, Z. A. Siddiqi, M. R. Gandhi, and G. Condermi, “Evidence for central pattering of sympathetic discharge in kittens,” Brain Res., 530, 349–352 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • P. M. Maslyukov
    • 1
  • A. D. Nozdrachev
    • 2
  1. 1.Department of Normal PhysiologyState Medical AcademyYaroslavlRussia
  2. 2.Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations