Neuroscience and Behavioral Physiology

, Volume 37, Issue 3, pp 215–219

Possible mechanisms of the formation of chronic fatigue syndrome in the clinical picture of multiple sclerosis

  • D. S. Kasatkin
  • N. N. Spirin


A frequent manifestation of multiple sclerosis (MS) is chronic fatigue syndrome, which can be defined as a subjective decrease in the level of physical and/or mental energy. Chronic fatigue syndrome can be divided into asthenia (fatigue at rest), pathological fatigability (fatigue on physical loading), and fatigue on the background of deterioration of other symptoms (exacerbation of MS). There are both central and peripheral mechanisms for the formation of fatigue. The combination of fatigue and affective disturbances, especially depression and sleep disorders (insomnia, restless legs syndrome) is common in MS and may provide evidence that they share common mechanisms — decreases in the activity of the serotoninergic and noradrenergic systems. An important component in the formation of chronic fatigue syndrome consists of endocrine and autoimmune factors, the latter having a greater effect on asthenia than on pathological fatigue. Further studies of the pathogenetic mechanisms of the formation of asthenia and pathological fatigue and clarification of their differential diagnostic signs should allow not only a better understanding of the nature of this syndrome, but also better selection of individual treatment.

Key words

multiple sclerosis chronic fatigue syndrome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Avedisova, L. S. Kanaeva, D. F. Ibragimov, and N. V. Lyupaeva, “Non-specific, psychological, and biological predictors of the efficacy of therapy with antidepressants in patients with depressive disorders (analytical review, part 2),” Psikhiat. Psikhofarmakoter., 5, 22–24 (2003).Google Scholar
  2. 2.
    V. B. Lantsova, L. Sh. Askarova, E. K. Sepp, and I. A. Zavalishin, “The role of acetylcholine receptors in the pathogenesis of autoimmune and neurodegenerative disorders of the nervous system,” Neiroimmunologiya, 1, 80 (2003).Google Scholar
  3. 3.
    Extrapyramidal Disorders: Handbook of Diagnosis and Treatment [in Russian], V. N. Shtok, I. A. Ivanova-Smolenskaya, and O. S. Levin (eds.), MEDpress-Inform, Moscow (2002).Google Scholar
  4. 4.
    N. Afari and D. Buchwald, “Chronic fatigue syndrome: A review,” Amer. J. Psychiat., 160, 221–236 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    A. K. Afifi and R. A. Bergman, Functional Neuroanatomy, McGraw-Hill, New York (1998).Google Scholar
  6. 6.
    M. Altemus, I. Licino, L. Iolkovsky, and P. W. Gold, “Stimulation of the hypothalamic-pituital-adrenal axis by bulimic behaviors,” Amer. Psychiatr. Ass., 378 (1992).Google Scholar
  7. 7.
    R. Bakshi, R. S. Miletich, K. Henschel, et al., “Fatigue in multiple sclerosis: cross-sectional correlation with brain MRI findings in 71 patients,” Neurology, 53, 1151–1155 (1999).PubMedGoogle Scholar
  8. 8.
    R. Bakshi, Z. A. Shaikh, R. S. Miletich, et al., “Fatigue in multiple sclerosis and its relationship to depression and neurologic disability,” Mult. Scler., 6, 181–185 (2000).PubMedGoogle Scholar
  9. 9.
    S. A. Brod, G. D. Marshall, E. M. Henninger, et al., “Interferon-beta 1b treatment decreases tumor necrosis factor-alpha and increases interleukin-6 production in multiple sclerosis,” Neurology, 46, 1633–1638 (1996).PubMedGoogle Scholar
  10. 10.
    D. Buchwald, M. H. Wener, T. Pearlman, et al., “Markers of inflammation and immune activation in chronic fatigue and chronic fatigue syndrome,” J. Rheumatol., 24, 372–376 (1997).PubMedGoogle Scholar
  11. 11.
    B. Casanova, F. Coret, and L. Landede, “A study of various scales of fatigue and impact on the quality of life among patients with multiple sclerosis,” Rev. Neurol., 30, 1235–1241 (2000).PubMedGoogle Scholar
  12. 12.
    C. C. Chao, E. N. Janoff, S. X. Hu, et al., “Altered cytokine release in peripheral blood mononuclear cell cultures from patients with chronic fatigue syndrome,” Cytokine, 3, 292–298 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    C. M. Clark, J. A. Fleming, D. Li, et al., “Sleep disturbance, depression, and lesion site in patients with multiple sclerosis,” Arch. Neurol., 49, 641–643 (1992).PubMedGoogle Scholar
  14. 14.
    R. Cohen and M. Fisher, “Amantadine treatment of fatigue associated with MS,” Arch. Neurol., 46, 676–680 (1989).PubMedGoogle Scholar
  15. 15.
    B. Colombo, F. M. Boneschi, P. Rossi, et al., “MRI and motor evoked potential findings in nondisabled multiple sclerosis with and without fatigue,” J. Neurol., 247, 506–509 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    M. J. Craner, A. C. Lo, J. A. Black, et al., “Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination,” Brain, 126, 1552–1561 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    M. A. Demitrack, J. K. Dale, S. E. Straus, et al., “Evidence for impaired activation of the hypothalamic-pituitary-adrenal axis in patients with chronic fatigue syndrome,” J. Cin. Endocrinol. Metab., 73, 1224–1234 (1991).CrossRefGoogle Scholar
  18. 18.
    S. D. M. Drakulic, J. Jevdjic, B. Milicic, et al., “Fatigue in patient with multiple sclerosis: relationship to disease pattern, disability, and depression,” Eur. J. Neurol., 9, Suppl. 2, 321–322 (2002).Google Scholar
  19. 19.
    R. Du Boistesselin, “Hydrotherapeutics and biophysiological developments. Roles of certain regulatory structures in asthenia: detection of Arcalion binding by histofluorescence,” Gaz. Med., 95, Suppl. 3, 21–24 (1988).Google Scholar
  20. 20.
    S. Endres et al., “Interleukin-1 in the pathogenesis of fever,” Eur. J. Clin. Invest., 17, 469–474 (1987).PubMedGoogle Scholar
  21. 21.
    C. Feuerstein, “Neurophysiological data concerning fatigue. Role of activator reticular formation,” Entret. Bichat., Hors-Serie, 11–19 (1992).Google Scholar
  22. 22.
    M. Filippi, M. A. Rocca, B. Colombo, et al., “Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis,” Neuroimage, 15, 559–567 (2002).PubMedCrossRefGoogle Scholar
  23. 23.
    J. D. Fisk, A. Pontefract, P. G. Ritvo, et al., “The impact of fatigue on patients with multiple sclerosis,” Can. J. Neurol. Sci., 21, 9–14 (1994).PubMedGoogle Scholar
  24. 24.
    P. Flachenecker, A. Wolf, M. Krauser, et al., “Cardiovascular autonomic dysfunction in multiple sclerosis: correlation with orthostatic intolerance,” J. Neurol., 2346, 578–586 (1999).CrossRefGoogle Scholar
  25. 25.
    H. Ford, P. Trigwell, and M. Johnson, “The nature of fatigue in multiple sclerosis,” J. Psychosom. Res., 45, 33–34 (1998).PubMedCrossRefGoogle Scholar
  26. 26.
    J. E. Freal, G. H. Kraft, and J. K. Coryell, “Symptomatic fatigue in multiple sclerosis,” Arch. Phys. Med. Rehabil., 65, 135–138 (1984).PubMedGoogle Scholar
  27. 27.
    T. Fukuzawa, H. Sasaki, S. Kikuchi, et al., “Serum carnitine and disabling fatigue in multiple sclerosis,” Psychiat. Clin. Neurosci., 50, 323–325 (1996).CrossRefGoogle Scholar
  28. 28.
    C. Gemma, “Activation of the hypothalamic serotoninergic system by central interleukin-1,” Eur. J. Pharmacol., 209, 139–140 (1991).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Gottschalk, T. Kumpfel, P. Flachenecker, et al., “Fatigue and regulation of the hypothalamo-pituitary-adrenal axis in multiple sclerosis,” Arch. Neurol., 62, 277–280 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    P. Hautecoeur, G. Forzy, P. Gallois, et al., “Variations of 1L2, 1L6, TNF alpha plasmatic levels in relapsing remitting multiple sclerosis,” Acta Neurol. (Belg.), 97, 240–243 (1997).Google Scholar
  31. 31.
    C. Heesen, S. M. Gold, A. Raji, et al., “Cognitive impairment correlates with hypothalamo-pituitary-adrenal axis dysregulation in multiple sclerosis,” Psychoneuroendocrinology, 27, 505–517 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    I. Huitinga, M. van der Cammen, L. Salm, et al., “IL-lβ immunoreactive neurons in the human hypothalamus: reduced numbers in multiple sclerosis,” J. Neuroimmun., 107, 8–20 (2000).CrossRefGoogle Scholar
  33. 33.
    J. Iriarte and P. de Castro, “Correlation between symptom fatigue and muscular fatigue in multiple sclerosis,” Eur. J. Neurol., 5, 579–585 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    J. Iriarte, M. L. Subira, and P. Castro, “Modalities of fatigue in multiple sclerosis: correlation with clinical and biological factors,” Mult. Scler., 6, 124–130 (2000).PubMedCrossRefGoogle Scholar
  35. 35.
    J. A. Kent-Braun, K. R. Sharma, R. G. Miller, et al., “Postexercise phosphocreatine resynthesis is slowed in multiple sclerosis,” Muscle Nerve, 17, 835–841 (1994).PubMedCrossRefGoogle Scholar
  36. 36.
    D. C. Kroencke, S. G. Lynch, and D. R. Denney, “Fatigue in multiple sclerosis: relationship to depression, disability, and disease pattern,” Mult. Scler., 6, 131–136 (2000).PubMedGoogle Scholar
  37. 37.
    L. B. Krupp, L. A. Alvarez, N. G. LaRocca, et al., “Fatigue in multiple sclerosis,” Arch. Neurol., 45, 435–437 (1988).PubMedGoogle Scholar
  38. 38.
    L. B. Krupp, L. A. Alvarez, N. G. LaRocca, et al., “Fatigue in multiple sclerosis,” Arch. Neurol., 46, 841–842 (1989).Google Scholar
  39. 39.
    L. B. Krupp, P. K. Doyle, C. Doscher, et al., “Fatigue therapy in multiple sclerosis: Results of a double-blind, randomized, parallel trial of amantadine, pemoline, and placebo,” Neurology, 45, 1956–1961 (1995).PubMedGoogle Scholar
  40. 40.
    J. F. Kurtzke, “On the evaluation of disability in multiple sclerosis,” Neurology, 2, 686–694 (1961).Google Scholar
  41. 41.
    E. M. Martinez-Caceres, J. Rio, M. Barrau, et al., “Amelioration of flu-like symptoms at the onset of interferon beta-lb therapy in multiple sclerosis by low-dose oral steroids is related to a decrease in interleukin-6 induction,” Ann. Neurol., 44, 682–685 (1998).PubMedCrossRefGoogle Scholar
  42. 42.
    C. J. Mathias, R. Mallipeddi, and K. Bleasdale-Barr, “Symptoms associated with orthostatic hypotension in pure autonomic failure and multiple system atrophy,” J. Neurol., 246, 893–898 (1999).PubMedCrossRefGoogle Scholar
  43. 43.
    W. I. McDonald and T. A. Sears, “The effects of experimental demyelination on conduction in the central nervous system,” Brain, 93, 583–598 (1970).PubMedCrossRefGoogle Scholar
  44. 44.
    S. Merkelbach, U. Dillman, C. Kölmel, et al., “Cardiovascular autonomic dysregulation and fatigue in multiple sclerosis,” Mult. Scler., 7, 320–326 (2001).PubMedGoogle Scholar
  45. 45.
    L. M. Metz, S. B. Patten, S. M. Rose, et al., “Multiple sclerosis fatigue is decreased at 6 months by glatiramer acetate (Copaxone),” J. Neurol., 248, Suppl. 2, 115 (2001).Google Scholar
  46. 46.
    L. M. Metz, S. B. Patten, and C. J. Archibald, “The effect of immunomodulatory treatment on multiple sclerosis fatigue,” J. Neurol. Neurosurg. Psychiat., 75, 1045–1047 (2004).PubMedCrossRefGoogle Scholar
  47. 47.
    D. C. Mohr, A. C. Boudewyn, D. E. Goodkin, et al., “Comparative outcomes for individual cognitive-behavior therapy, supportive-expressive group psychotherapy, and sertraline for the treatment of depression in multiple sclerosis,” J. Consult. Clin Psychol., 69, 942–949 (2001).PubMedCrossRefGoogle Scholar
  48. 48.
    Multiple Sclerosis Council for Clinical Practice Guidelines (1988).Google Scholar
  49. 49.
    Multiple Sclerosis Therapeutics, R. A. Rudick and D. E. Goodkin (eds.), London (2000).Google Scholar
  50. 50.
    T. J. Murray, “Amantadine therapy for fatigue in multiple sclerosis,” Can. J. Neurol. Sci., 12, 251–254 (1985).PubMedGoogle Scholar
  51. 51.
    K. W. Rammohan, J. H. Rosenberg, D. J. Lynn, et al., “Efficacy and safety of modafinil (Provigil) for the treatment of fatigue in multiple sclerosis: a two centre phase 2 study,” J. Neurol. Neurosurg. Psychiatr., 72, 179–183 (2002).PubMedCrossRefGoogle Scholar
  52. 52.
    A. T. Reder, R. L. Makowiec, and M. T. Lowy, “Adrenal size is increased in multiple sclerosis,” Arch. Neurol., 51, 151–154 (1994).PubMedGoogle Scholar
  53. 53.
    U. Roelcke, L. Kappos, J. Lechner-Scott, et al., “Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study,” Neurology, 48, 1566–1571 (1997).PubMedGoogle Scholar
  54. 54.
    G. A. Rosenberg and O. Appenzeller, “Amantadine, fatigue, and multiple sclerosis,” Arch. Neurol., 45, 1104–1106 (1988).PubMedGoogle Scholar
  55. 55.
    A. Ruger, P. Flachenecker, C. Hippel, et al., “Fatigue in multiple sclerosis is related to dysfunction of the sympathic nervous system,” ENS (Berlin) (2002).Google Scholar
  56. 56.
    M. A. Schaeffer and A. Baum, “Adrenal cortical response to stress at Three Mile Island,” Psychosom. Med., 46, 175–181 (1984).Google Scholar
  57. 57.
    C. E. Schwartz, L. Coulthard-Morris, and Q. Zeng, “Psychosocial correlates of fatigue in multiple sclerosis,” Arch. Phys. Med. Rehabil., 77, 165–170 (1996).PubMedCrossRefGoogle Scholar
  58. 58.
    S. R. Schmid, M. D. Petrie, M. P. McDermott, et al., “Quantitative assessment of sustained-release 4-aminopyridine for symptomatic treatment of multiple sclerosis,” Neurology, 48, 817–821 (1997).Google Scholar
  59. 59.
    S. R. Schmid, M. Covington, B. M. Segal, et al., “Fatigue in multiple sclerosis: Current understanding and future directions,” J. Rehabil. Res. Dev., 39, 211–224 (2002).Google Scholar
  60. 60.
    G. L. Sheean, N. M. Murray, J. C. Rothwell, et al., “An open-labelled clinical and electrophysiological study of 3,4-diaminopyridine in the treatment of fatigue in multiple sclerosis,” Brain, 121, 967–975 (1998).PubMedCrossRefGoogle Scholar
  61. 61.
    D. F. Swaab, A.-M. Bao, and P. J. Lucassen, “The stress system in the human brain in depression and neurodegeneration,” Ageing Res. Rev., 4, 141–194 (2005).PubMedCrossRefGoogle Scholar
  62. 62.
    M. Takamori and S. Okumura, “Presynaptic modulation of neuromuscular transmission by acetylcholine receptor antibody: myasthenic serum and monoclonal antibody produced by transformed lymphocytes,” Neurology, 36, 942–947 (1986).PubMedGoogle Scholar
  63. 63.
    V. Tomassini, E. Onesti, P. Paseualetti, et al., “Acetyl-L-carnitine treatment of fatigue in multiple sclerosis,” Eur. J. Neurol., 9, Suppl. 2, 3199 (2002).Google Scholar
  64. 64.
    V. Tomassini, C. Pozzilli, E. Onesti, et al., “Comparison of the effects of acetyl-carnitine and amantadine for the treatment of fatigue in multiple sclerosis: results of a pilot, randomised, double-blind, crossover trial,” J. Neurol. Sci., 218, 103–108 (2004).PubMedCrossRefGoogle Scholar
  65. 65.
    S. J. Tzartos, D. Sophianos, and A. Efthimiadis, “Role of the main immunological region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protect against antigenic modulation by human sera,” J. Immunol., 134, 2343–2349 (1985).PubMedGoogle Scholar
  66. 66.
    W. M. van der Kamp, M. Noordhout, P. O. Thomson, et al., “Correlation of phasic muscle strength and corticomotoneuron conduction time in multiple sclerosis,” Ann. Neurol., 29, 6–12 (1991).PubMedCrossRefGoogle Scholar
  67. 67.
    M. Vieren, B. D’Hooghe, and H. Carton, “The use of 5-methoxypsoralen for fatigue and other symptoms in MS,” J. Neuroimmun., 54, 56–63 (1995).Google Scholar
  68. 68.
    S. G. Waxman, “Clinicopathological correlation in multiple sclerosis and related diseases,” Adv. Neurol., 31, 169–182 (1981).PubMedGoogle Scholar
  69. 69.
    W. Wieling and J. M. Karemaker, “Measurement of heart rate and blood pressure to evaluate disturbances in neurocardiovascular control, in: Autonomic Failure. A Textbook of Clinical Disorders of the Autonomic Nervous System, C. J. Mathias and R. Bannister (eds.), Oxford University Press, New York, 4th edition (1999).Google Scholar
  70. 70.
    E. Willoughby, “Modafinil for fatigue in multiple sclerosis,” J. Neurol. Neurosurg. Psychiat., 72, 150 (2002).PubMedCrossRefGoogle Scholar
  71. 71.
    S. A. Wulff, E. Calabresi, and A. Allie, “The Kv1.3 potassium channel as a target for multiple sclerosis,” J. Clin. Invest., 111, 1703–1713 (2003).PubMedCrossRefGoogle Scholar
  72. 72.
    X. Xu, H. Zhang, H. Guo, et al., “Clinical neuroimmunology,” Adv. Neuroimmunol., 6, No. 3, 249–257 (1996).PubMedCrossRefGoogle Scholar
  73. 73.
    R. Yehuda, H. Resnick, G. Kahana, et al., “Long-lasting hormonal alterations to extreme stress in humans: normative or maladaptive,” Psychosom. Med., 55, 287–297 (1993).PubMedGoogle Scholar
  74. 74.
    A. H. Young, M. Sharpe, A. Clements, et al., “Basal activity of the hypothalamic-pituitary-adrenal axis in patients with the chronic fatigue syndrome (neurasthenia),” Biol. Psychiat., 43, 236–237 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • D. S. Kasatkin
    • 1
  • N. N. Spirin
    • 1
  1. 1.Yaroslavl State Medical AcademyRussia

Personalised recommendations