Neuroscience and Behavioral Physiology

, Volume 35, Issue 7, pp 715–721 | Cite as

Electroconvulsive Shock Induces Neuron Death in the Mouse Hippocampus: Correlation of Neurodegeneration with Convulsive Activity

  • I. I. Zarubenko
  • A. A. Yakovlev
  • M. Yu. Stepanichev
  • N. V. Gulyaeva


The relationship between convulsive activity evoked by repeated electric shocks and structural changes in the hippocampus of Balb/C mice was studied. Brains were fixed two and seven days after the completion of electric shocks, and sections were stained by the Nissl method and immunohistochemically for apoptotic nuclei (the TUNEL method). In addition, the activity of caspase-3, the key enzyme of apoptosis, was measured in brain areas immediately after completion of electric shocks. The number of neurons decreased significantly in field CA1 and the dentate fascia, but not in hippocampal field CA3. The numbers of cells in CA1 and CA3 were inversely correlated with the intensity of convulsions. Signs of apoptotic neuron death were not seen, while caspase-3 activity was significantly decreased in the hippocampus after electric shocks. These data support the notion that functional changes affect neurons after electric shock and deepen our understanding of this view, providing direct evidence that there are moderate (up to 10%) but significant levels of neuron death in defined areas of the hippocampus. Inverse correlations of the numbers of cells with the extent of convulsive activity suggest that the main cause of neuron death is convulsions evoked by electric shocks.

Key Words

convulsive activity electric shocks hippocampus apoptosis caspase-3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. V. Pavlova, A. A. Yakovlev, M. Yu. Stepanichev, A. M. Mendzheritskii, and N. V. Gulyaeva, “Pentylenetetrazolium kindling induces activation of caspase-3 in the rat brain,” Zh. Vyssh. Nerv. Deyat., 53, No.1, 110–112 (2003).Google Scholar
  2. 2.
    M. Yu. Stepanichev, I. M. Zdobnova, I. I. Zarubenko, M. V. Onufriev, Yu. V. Moiseeva, L. I. Chernyavskaya, and N. V. Gulyaeva, “The intensity of convulsive activity correlates with oxidative stress and apoptosis in the rat hippocampus using the kainate model,” Neirokhimiya, 17, No.3, 189–191 (2000).Google Scholar
  3. 3.
    A. A. Yakovlev, M. V. Onufriev, M. Yu. Stepanichev, K. Braun, and N. V. Gulyaeva, “Caspase-3 activity in brain areas of various rodent species,” Neirokhimiya, 18, No.1, 41–43 (2001).Google Scholar
  4. 4.
    A. A. Yakovlev, T. P. Semenova, S. G. Kolaeva, M. V. Onufriev, S. L. Mikhalev, and N. V. Gulyaeva, “Changes in caspase-3 activity in brain areas of the ground squirrel Citellus undulates during the hibernation cycle,” Neirokhimiya, 19, No.1, 33–36 (2002).Google Scholar
  5. 5.
    R. Abrams, Electroconvulsive Therapy, Oxford University Press, New York (1992).Google Scholar
  6. 6.
    M. W. Agelink, J. Andrich, T. Postert, U. Wurzinger, T. Zeit, P. Klotz, and H. Przuntek, “Relation between electroconvulsive therapy, cognitive side effects, neuron specific enolase, and protein S-100,” J. Neurol. Neurosurg. Psychiat., 71, 394–396 (2001).CrossRefPubMedGoogle Scholar
  7. 7.
    Y. Ben-Ari, “Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy,” Neurosci., 14, 375–403 (1985).CrossRefGoogle Scholar
  8. 8.
    J. Bengzon, Z. Kokaia, E. Elmer, A. Nanobashvili, M. Kokaia, and O. Lindvall, “Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures,” Proc. Natl. Acad. Sci. USA, 94, 10432–10437 (1997).CrossRefPubMedGoogle Scholar
  9. 9.
    M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein binding,” Anal. Biochem., 72, 248–254 (1976).PubMedGoogle Scholar
  10. 10.
    W. M. Burnham, G. A. Cottrell, D. Diosy, and R. J. Racine, “Long-term changes in entorhinal-dentate evoked potentials induced by electroconvulsive shock seizures in rats,” Brain Res., 698, 180–184 (1995).CrossRefPubMedGoogle Scholar
  11. 11.
    J. E. Cavazos, I. Das, and T. P. Sutula, “Neuronal loss induced in limbic pathways by kindling. Evidence for induction of hippocampal sclerosis by repeated brief seizures,” J. Neurosci., 14, 3106–3121 (1994).PubMedGoogle Scholar
  12. 12.
    J. S. Duncan, “MRI studies. Do seizures damage the brain?” Progr. Brain Res., 135, 253–261 (2002).Google Scholar
  13. 13.
    P. S. Eriksson, E. Perfilieva, T. Bjork-Eriksson, A. M. Alborn, C. Nordberg, D. A. Peterson, and F. H. Gage, “Neurogenesis in the adult human hippocampus,” Nature. Med., 4, 1313–1317 (1998).CrossRefPubMedGoogle Scholar
  14. 14.
    B. Fadel, S. Orrenius, and B. Zhivotovksy, “The most unkindest cut of all: on the multiple roles of mammalian caspases,” Leukemia, 14, 1514–1525 (2000).CrossRefPubMedGoogle Scholar
  15. 15.
    M. Fink, “How does electroconvulsive therapy work?” Neuropharmacol., 3, 73–82 (1990).Google Scholar
  16. 16.
    R. M. Giles, “Electroconvulsive therapy: time to bring it out of the shadows,” J. Amer. Med. Assoc., 285, 1346–1348 (2001).CrossRefGoogle Scholar
  17. 17.
    Z. Gombos, A. Mendonca, R. J. Racine, G. A. Cottrell, and W. M. Burnham, “Long-term enhancement of entorhinal-dentate evoked potentials following ‘modified’ ECS in the rat,” Brain Res., 766, 168–172 (1997).CrossRefPubMedGoogle Scholar
  18. 18.
    Z. Gombos, A. Spiller, G. A. Cottrell, R. J. Racine, and W. M. Burnham, “Mossy fiber sprouting induced by repeated electroconvulsive shock seizures,” Brain Res., 844, 28–33 (1999).CrossRefPubMedGoogle Scholar
  19. 19.
    E. Gould and P. Tanapat, “Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of adult rat,” Neurosci., 80, 427–436 (1997).CrossRefGoogle Scholar
  20. 20.
    N. V. Gulyaeva, I. E. Kudryashov, and I. V. Kudryashova, “Caspase activity is essential for long-term potentiation,” J. Neurosci. Res., 73, 853–864 (2003).CrossRefPubMedGoogle Scholar
  21. 21.
    N. Hiroi, G. J. Marek, J. R. Brown, H. Ye, F. Saudou, V. A. Vaidya, R. S. Duman, M. E. Greenberg, and E. J. Nestler, “Essential role of the fosB gene in molecular, cellular, and behavioral actions of chronic electroconvulsive seizures,” J. Neurosci., 18, 6952–6962 (1998).PubMedGoogle Scholar
  22. 22.
    G. L. Holmes, “Seizure-induced neuronal injury: animal data,” Neurology, 59,Suppl. 5, S3–S6 (2002).Google Scholar
  23. 23.
    G. I. Holmes and Y. Ben-Ari, “The neurobiology and consequences of epilepsy in the developing brain,” Pediatric Res., 49, 320–325 (2001).Google Scholar
  24. 24.
    R. Kalviainen and T. Salmenpera, “Do recurrent seizures cause neuronal damage? A series of studies with MRI volumetry in adults with partial epilepsy,” Progr. Brain Res., 135, 279–295 (2002).Google Scholar
  25. 25.
    A. Kondratyev, N. Sahibzada, and K. Gale, “Electroconvulsive shock exposure prevents neuronal apoptosis after kainic acid-evoked status epilepticus,” Brain Res. Mol. Brain Res., 91, 1–13 (2001).CrossRefPubMedGoogle Scholar
  26. 26.
    I. E. Kudryashov, M. V. Onufriev, I. V. Kudryashova, and N. V. Gulyaeva, “Periods of postnatal maturation of hippocampal: synaptic modifications and neuronal disconnection,” Dev. Brain Res., 132, 113–120 (2001).CrossRefGoogle Scholar
  27. 27.
    I. Kudryashov, A. Yakovlev, I. Kudryashova, and N. Gulyaeva, “Footshock stress alters early postnatal development of electrophysiological responses and caspase-3 activity in rat hippocampus,” Neurosci. Lett., 332, 95–98 (2002).CrossRefPubMedGoogle Scholar
  28. 28.
    M. Los, C. Stroh, R. U. Janicke, I. H. Engels, and K. Schulze-Osthoff, “Caspases: more than just killers?” Trends Immunol., 22, 31–34 (2001).CrossRefPubMedGoogle Scholar
  29. 29.
    T. M. Madsen, A. Treschow, J. Bengzon, T. G. Bolwig, O. Lindvall, and A. Tingstrom, “Increased neurogenesis in a model of electroconvulsive therapy,” Biol. Psychiatr., 47, 1043–1049 (2000).CrossRefGoogle Scholar
  30. 30.
    D Masco, N. Sahibzada, R. Switzer, and K. Gale, “Electroshock seizures protect against apoptotic hippocampal cell death induced by adrenalectomy,” Neurosci., 91, 1315–1319 (1999).CrossRefGoogle Scholar
  31. 31.
    G. W. Mathern, P. D. Adelson, L. D. Cahan, and J. P. Leite, “Hippocampal neuron damage in human epilepsy: Meyel’s hypothesis revisited,” Progr. Brain Res., 135, 237–251 (2002).Google Scholar
  32. 32.
    M. P. Mattson and W. Duan, “’Apoptotic’ biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders,” J. Neurosci. Res., 58, 152–166 (1999).CrossRefPubMedGoogle Scholar
  33. 33.
    M. P. Mattson, J. N. Keller, and J. G. Begley, “Evidence for synaptic apoptosis,” Exptl. Neurol., 153, 35–48 (1998).CrossRefGoogle Scholar
  34. 34.
    B. S. Meldrum, “Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives,” Progr. Brain Res., 135, 3–11 (2002).Google Scholar
  35. 35.
    B. S. Meldrum, “Neuropathological consequences of chemically and electrically induced seizures,” Ann. N.Y. Acad. Sci., 462, 186–193 (1986).PubMedGoogle Scholar
  36. 36.
    J. V. Nadler, B. W. Perry, and C. W. Cotman, “Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells,” Nature, 271, 676–677 (1978).PubMedGoogle Scholar
  37. 37.
    J. N. Nobrega, R. Raymond, L. DiStefano, and W. M. Burnham, “Long-term changes in regional brain cytochrome oxidase activity induced by electroconvulsive treatment in rats,” Brain Res., 605, 1–8 (1993).PubMedGoogle Scholar
  38. 38.
    W. Pohle, A. Becker, G. Grecksch, A. Juhre, and A. Willenberg, “Piracetam prevents pentylenetetrazol kindling-induced neuronal loss and learning deficits,” Seizure, 6, 467–474 (1997).PubMedGoogle Scholar
  39. 39.
    H. Pollard, C. Charriaut-Marlangue, S. Cantagrel, A. Represea, O. Robain, J. Moreau, and Y. Ben-Ari, “Kainate-induced apoptotic cell death in hippocampal neurons,” Neurosci., 63, 7–18 (1994).Google Scholar
  40. 40.
    B. W. Scott, J. M. Wojtowicz, and W. M. Burnham, “Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures,” Exptl. Neurol., 165, 231–236 (2000).Google Scholar
  41. 41.
    B. W. Scott, S. W. Wang, W. M. Burnham, U. De Boni, and J. M. Wojtowicz, “Kindling-induced neurogenesis in dentate gyrus of the rat,” Neurosci. Lett., 248, 73–76 (1998).PubMedGoogle Scholar
  42. 42.
    R. S. Sloviter, “Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy,” Science, 235, 73–76 (1987).PubMedGoogle Scholar
  43. 43.
    S. Sperandio, I. De Belle, S. Castro-Obregon, G. del Rio, and D. E. Bredesen, “Cell death programs in neural development and disease,” in: Cerebrovascular Disease, 22nd Princeton Conference, P. H. Chan (ed.), Cambridge University Press, Cambridge (2002).Google Scholar
  44. 44.
    C. Stewart, K. Jeffery, and I. Reid, “LTP-like synaptic changes following electroconvulsive stimulation,” Neuroreport, 5, 1041–1044 (1994).PubMedGoogle Scholar
  45. 45.
    W. H. Theodore and W. D. Gaillard, “Neuroimaging and the progression of epilepsy,” Progr. Brain Res., 135, 305–313 (2002).Google Scholar
  46. 46.
    V. A. Vaidya, J. A. Siuciak, F. Du, and R. S. Suman, “Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures,” Neurosci., 89, 157–166 (1999).Google Scholar
  47. 47.
    R. D. Weiner, “Does electroconvulsive therapy cause brain damage?” Behav. Brain Sci., 7, 1–53 (1984).Google Scholar
  48. 48.
    H. S. White, “Animal models of epileptogenesis,” Neurology, 59,Suppl. 5, S7–S14 (2002).Google Scholar
  49. 49.
    L. X. Zhang, M. A. Smith, X. L. Li, S. R. Weiss, and R. M. Post, “Apoptosis of hippocampal neurons after amygdala kindled seizures,” Brain Res. Mol. Brain Res., 55, 198–208 (1998).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • I. I. Zarubenko
    • 1
  • A. A. Yakovlev
    • 1
  • M. Yu. Stepanichev
    • 1
  • N. V. Gulyaeva
    • 1
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations