Skip to main content

Advertisement

Log in

Correlation of Phase Composition, Structure, and Mechanical Properties of Natural Basalt Continuous Fibers

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This paper presents a study of the influence of basalt rocks’ phase composition, acidity modulus, and structural parameter NBO/T on the tensile strength and elastic modulus of basalt continuous fibers (BCFs) derived from them. A series of BCF samples based on 14 different basalt deposits was obtained under equal conditions. The tensile strength and elastic modulus of the BCFs from different deposits vary in the ranges of 1495–3380 MPa and 58.2–78.7 GPa, respectively. Using the original method of quantitative phase analysis based on the Rietveld method, the phase compositions of the 14 deposits were defined. All deposits can be used to obtain BCFs. In the studied natural rocks, the main component is tectosilicates; the mass content of framework aluminosilicates is in the range of 16.5–3.3 mass percent. The second main component is inosilicates; the mass content of chain aluminosilicates is in the range of 6.0–58.0 mass percent. The correlations among phase composition, acidity modulus, ratio of non-bridging oxygens to tetrahedral cations, tensile strength, and elastic modulus of the BCFs from the 14 different basalt deposits were calculated. There were strong positive correlation between tectosilicate minerals mass content and elastic modulus [Pearson correlation coefficient (PCC) of 0.7] and strong negative correlation between content of chain and layered aluminosilicates and elastic modulus (PCC of − 0.74).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altomare, A., Burla, M. C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G., & Rizzi, R. (2001). Quanto: A Rietveld program for quantitative phase analysis of polycrystalline mixtures. Journal of Applied Crystallography, 34(3), 392–397.

    Article  Google Scholar 

  • Aranda, M. A. G., De La Torre, Á. G., & León-Reina, L. (2012). Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products. Reviews in Mineralogy and Geochemistry, 74(Young 1993), 169–209.

    Article  Google Scholar 

  • Bhat, T., Fortomaris, D., Kandare, E., & Mouritz, A. P. (2018). Properties of thermally recycled basalt fibres and basalt fibre composites. Journal of Materials Science, 53(3), 1933–1944.

    Article  Google Scholar 

  • Brooker, R. A., Kohn, S. C., Holloway, J. R., & Mcmillan, P. F. (2001). Structural controls on the solubility of CO2 in silicate melts part I: Bulk solubility data. Chemical Geology, 174(1–3), 225–239.

    Article  Google Scholar 

  • Chen, X., Zhang, Y., Hui, D., Chen, M., & Wu, Z. (2017). Study of melting properties of basalt based on their mineral components. Composites Part B: Engineering, 116, 53–60.

    Article  Google Scholar 

  • Chen, X., Zhang, Y., Huo, H., & Wu, Z. (2017). Improving the tensile strength of continuous basalt fiber by mixing basalts. Fibers and Polymers, 18(9), 1796–1803.

    Article  Google Scholar 

  • Chen, X., Zhang, Y., Huo, H., & Wu, Z. (2020). Study of high tensile strength of natural continuous basalt fibers. Journal of Natural Fibers, 17(2), 214–222.

    Article  Google Scholar 

  • Deák, T., & Czigány, T. (2009). Chemical composition and mechanical properties of basalt and glass fibers: A comparison. Textile Research Journal, 79(7), 645–651.

    Article  Google Scholar 

  • Dhand, V., Mittal, G., Rhee, K. Y., Park, S.-J., & Hui, D. (2015). A short review on basalt fiber reinforced polymer composites. Composites Part B: Engineering, 73, 166–180.

    Article  Google Scholar 

  • Dzhigiris, D. D., Makhova, M. F., Gorobinskaya, V. D., & Bombyr, L. N. (1983). Continuous basalt fiber. Glass and Ceramics, 40(9), 467–470.

    Article  Google Scholar 

  • Fomichev, S. V., Babievskaya, I. Z., Dergacheva, N. P., Noskova, O. A., & Krenev, V. A. (2010). Evaluation and modification of the initial composition of gabbro-basalt rocks for mineral-fiber fabrication and stone casting. Inorganic Materials, 46(10), 1121–1125.

    Article  Google Scholar 

  • Gutnikov, S. I., & Lazoryak, B. I. (2019). Effect of nozzle diameter on basalt continuous fiber properties. Fibers, 7(7), 65. https://doi.org/10.3390/fib7070065.

    Article  Google Scholar 

  • Gutnikov, S. I., Malakho, A. P., Lazoryak, B. I., & Loginov, V. S. (2009). Influence of alumina on the properties of continuous basalt fibers. Russian Journal of Inorganic Chemistry, 54(2), 191–196.

    Article  Google Scholar 

  • Gutnikov, S. I., Manylov, M. S., Lipatov, Y. V., Lazoryak, B. I., & Pokholok, K. V. (2013). Effect of the reduction treatment on the basalt continuous fiber crystallization properties. Journal of Non-Crystalline Solids, 368, 45–50.

    Article  Google Scholar 

  • Gutnikov, S., Zhukovskaya, E. S., Popov, S. S., & Lazoryak, B. I. (2019). Correlation of the chemical composition, structure and mechanical properties of basalt continuous fibers. AIMS Materials Science, 6(5), 806–832.

    Article  Google Scholar 

  • Johannesson, B., Sigfusson, T. I., & Franzson, H. (2019). Suitability of Icelandic basalt for production of continuous fibres. Applied Earth Science, 128(3), 73–78.

    Article  Google Scholar 

  • Johnston, A. D. (1986). Anhydrous P-T phase relations of near-primary high-alumina basalt from the South Sandwich Islands. Contributions to Mineralogy and Petrology, 92(3), 368–382.

    Article  Google Scholar 

  • Jung, T., & Subramanian, R. V. (1993). Strengthening of basalt fiber by alumina addition. Scripta Metallurgica et Materialia, 28(4), 527–532.

    Article  Google Scholar 

  • Karamanov, A., & Pelino, M. (2006). Sinter-crystallisation in the diopside–albite system. Journal of the European Ceramic Society, 26(13), 2511–2517. https://doi.org/10.1016/j.jeurceramsoc.2005.06.042.

    Article  Google Scholar 

  • Karamanov, A., Pisciella, P., Cantalini, C., & Pelino, M. (2000). Influence of Fe3+/Fe ratio on the crystallization of iron–rich glasses made with industrial wastes. Journal of the American Ceramic Society, 83(12), 3153–3157.

    Article  Google Scholar 

  • Kuzmin, K. L., Zhukovskaya, E. S., Gutnikov, S. I., Pavlov, Y. V., & Lazoryak, B. I. (2016). Effects of ion exchange on the mechanical properties of basaltic glass fibers. International Journal of Applied Glass Science. https://doi.org/10.1111/ijag.12118.

    Article  Google Scholar 

  • Lima, L. F., Mantas, P. Q., Segadães, A. M., & Cruz, R. C. D. (2020). Processing and characterization of sinter-crystallized basalt glass-ceramics. Journal of Non-Crystalline Solids, 538, 120019.

    Article  Google Scholar 

  • Lipatov, Y. V., Gutnikov, S. I., Manylov, M. S., & Lazoryak, B. I. (2012). Effect of ZrO2 on the alkali resistance and mechanical properties of basalt fibers. Inorganic Materials, 48(7), 751–756.

    Article  Google Scholar 

  • Liu, J., Yang, J., Chen, M., Lei, L., & Wu, Z. (2018). Effect of SiO2, Al2O3 on heat resistance of basalt fiber. Thermochimica Acta, 660, 56–60.

    Article  Google Scholar 

  • Lutterotti, L. (2000). Maud: a Rietveld analysis program designed for the internet and experiment integration. Acta Crystallographica Section A Foundations of Crystallography, 56(s1), s54–s54.

    Article  Google Scholar 

  • Manylov, M. S., Gutnikov, S. I., Lipatov, Y. V., Malakho, A. P., & Lazoryak, B. I. (2015). Effect of deferrization on continuous basalt fiber properties. Mendeleev Communications, 25(5), 386–388.

    Article  Google Scholar 

  • Morozov, N. N., Bakunov, V. S., Morozov, E. N., Aslanova, L. G., Granovskii, P. A., Prokshin, V. V., & Zemlyanitsyn, A. A. (2001). Materials based on basalts from the European North of Russia. Glass and Ceramics, 58, 100–104.

    Article  Google Scholar 

  • Mysen, B. O., & David Virgo, C. M. S. (1980). Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study. American Mineralogist, 65, 690–710.

    Google Scholar 

  • Mysen, B. O., Virgo, D., & Seifert, F. A. (1982). The structure of silicate melts: Implications for chemical and physical properties of natural magma. Reviews of Geophysics, 20(3), 353. https://doi.org/10.1029/RG020i003p00353.

    Article  Google Scholar 

  • Perevozchikov, B. V., Pisciotta, A., Osovetsky, B. M., Menshikova, E. A., & Kazymov, K. P. (2014). Quality evaluation of the Kuluevskaya basalt outcrop for the production of mineral fiber, Southern Urals, Russia. Energy Procedia, 59, 309–314.

    Article  Google Scholar 

  • Persikov, E. S., Bukhtiyarov, P. G., & Sokol, A. G. (2017). Viscosity of hydrous kimberlite and basaltic melts at high pressures. Russian Geology and Geophysics, 58(9), 1093–1100.

    Article  Google Scholar 

  • Petříček, V., Dušek, M., & Palatinus, L. (2014). Crystallographic computing system JANA2006: General features. Zeitschrift für Kristallographie - Crystalline Materials, 229(5), 345–352.

    Article  Google Scholar 

  • Pisciotta, A., Perevozchikov, B. V., Osovetsky, B. M., Menshikova, E. A., & Kazymov, K. P. (2015). Quality assessment of melanocratic basalt for mineral fiber product, Southern Urals, Russia. Natural Resources Research, 24(3), 329–337.

    Article  Google Scholar 

  • Sarasini, F., Tirillò, J., & Seghini, M. C. (2018). Influence of thermal conditioning on tensile behaviour of single basalt fibres. Composites Part B: Engineering, 132, 77–86.

    Article  Google Scholar 

  • Shebanov, S. M., Novikov, I. K., Koudryavtsev, A. A., Gumargalieva, K. Z., Ananyin, O. B., Gerasimov, I. A., & Pavlikov, A. V. (2018). Strength characteristics of the filaments and a basalt fiber roving at different clamping lengths and deformation rates. Mechanics of Composite Materials, 54(3), 349–350.

    Article  Google Scholar 

  • Sokolinskaya, M. A., Zabava, L. K., Tsybulya, T. M., & Medvedev, A. A. (1991). Strength properties of basalt fibers. Glass and Ceramics, 48(10), 435–437.

    Article  Google Scholar 

  • Sørensen, P. M., Pind, M., Yue, Y. Z., Rawlings, R. D., Boccaccini, A. R., & Nielsen, E. R. (2005). Effect of the redox state and concentration of iron on the crystallization behavior of iron-rich aluminosilicate glasses. Journal of Non-Crystalline Solids, 351(14–15), 1246–1253.

    Article  Google Scholar 

  • Toby, B. H. (2001). EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34(2), 210–213.

    Article  Google Scholar 

  • Vasileva, A. A., Kychkin, A. K., Anan’eva, E. S., & Lebedev, M. P. (2014). Investigation into the properties of basalt of the Vasil’evskoe deposit in Yakutia as the raw material for obtaining continuous fibers. Theoretical Foundations of Chemical Engineering, 48(5), 667–670.

    Article  Google Scholar 

  • Wei, B., Cao, H., & Song, S. (2010). Tensile behavior contrast of basalt and glass fibers after chemical treatment. Materials and Design, 31(9), 4244–4250.

    Article  Google Scholar 

  • Zhang, Y., Vulfson, Y., Zheng, Q., Luo, J., Kim, S. H., & Yue, Y. (2017). Impact of fiberizing method on physical properties of glass wool fibers. Journal of Non-Crystalline Solids. https://doi.org/10.1016/j.jnoncrysol.2017.09.039.

    Article  Google Scholar 

  • Zhang, Y., Yu, C., Chu, P. K., Lv, F., Zhang, C., Ji, J., et al. (2012). Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites. Materials Chemistry and Physics, 133(2–3), 845–849.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Russian Foundation for Basic Research (Grant No. 18-29-17068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Gutnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutnikov, S.I., Popov, S.S., Efremov, V.A. et al. Correlation of Phase Composition, Structure, and Mechanical Properties of Natural Basalt Continuous Fibers. Nat Resour Res 30, 1105–1119 (2021). https://doi.org/10.1007/s11053-020-09786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09786-1

Keywords

Navigation