Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Simplified Simulated Materials of Asteroid Ryugu for Spacecraft Operations and Scientific Evaluations


There are growing demands for simulated asteroid materials (simulants) due to the increasing number of asteroid missions and interest in space resources. While a simulant should have a high fidelity to a target body for general scientific and engineering purposes, a simplified and purpose-specialized simulant is also useful for specific purposes, which often arise during actual space missions. In the mission phase of the Hayabusa2 spacecraft, which is a sample return mission from a C-type asteroid, Ryugu, we developed simplified simulants based on terrestrial observations of the asteroid. These observations indicate that Ryugu is similar to carbonaceous meteorites, especially to CM or CI chondrite. Due largely to the limited time available to produce the simulant, we decided to keep the constituent as simple as possible. Because the main constituent mineral that comprises carbonaceous chondrites is phyllosilicate, we used serpentine (mostly lizardite) as the base material for the simulant. By adjusting the abundance of the carbon suspension, we controlled the reflectance in the wavelength region of the visible to near infrared. As a result, we found that the characteristics of the simplified Ryugu simulant developed by this study simulate relatively closely the materials of carbonaceous meteorites in terms of density and spectral characteristics. The simplified simulant was especially useful for evaluating the initial data obtained by the spacecraft and the sampling device before obtaining actual samples.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. Allen, C. C., Jager, K. M., Morris, R. V., Lindstrom, D. J., Lindstrom, M. M., & Lockwood, J. P. (1998). JSC Mars-1: A Martian soil simulant. Space,98, 469–476.

  2. Bland, P. A., Cressey, G., & Menzies, O. N. (2004). Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy. Meteoritics & Planetary Science,39(1), 3–16.

  3. Britt, D. T., Cannon, K. M., Donaldson Hanna, K., Hogancamp, J., Poch, O., Beck, P., et al. (2019). Simulated asteroid materials based on carbonaceous chondrite mineralogies. Meteoritics & Planetary Science,54(9), 2067–2082.

  4. Brown, P. G., Hildebrand, A. R., Zolensky, M. E., Grady, M., Clayton, R. N., Mayeda, T. K., et al. (2000). The fall, recovery, orbit, and composition of the Tagish Lake meteorite: A new type of carbonaceous chondrite. Science,290(5490), 320–325.

  5. Chang, S., Mach, R., & Lennon, K. (1987). Carbon chemistry of separated phases of Murchison and Allende meteorites. In 9th lunar & planetary science conference (pp. 157–159).

  6. Chapman, C. R. (1996). S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s fly-bys of Gaspra and Ida. Meteoritics & Planetary Science,31(6), 699–725.

  7. Elvis, M. (2012). Let’s mine asteroids–for science and profit. Nature,485(7400), 549.

  8. Graps, A., Abbud-Madrid, A., Abell, P., Barucci, A., Beck, P. Bonal, L., Cannon, K. (2019) In-space utilisation of asteroids: asteroid composition—answers to questions from the asteroid miners, ASIME 2018 White paper,

  9. Ishiguro, M., Kuroda, D., Hasegawa, S., Kim, M., Choi, Y. J., Moskovitz, N., et al. (2014). Optical properties of (162173) 1999 Ju3: In preparation for the JAXA Hayabusa 2 sample return mission. Astrophysical Journal,792(1), 74.

  10. Izawa, M. R. M., King, P. L., Flemming, R. L., Peterson, R. C., & McCausland, P. J. A. (2010). Mineralogical and spectroscopic investigation of enstatite chondrites by X-ray diffraction and infrared reflectance spectroscopy. Journal of Geophysical Research,115, E7.

  11. Keil, K. (2000). Thermal alteration of asteroids: evidence from meteorites. Planetary and Space Science,48(10), 887–903.

  12. Kereszturi, A. (2014). Surface processes in microgravity for landing and sampling site selection of asteroid missions-Suggestions for MarcoPolo-R. Planetary and Space Science,101, 65–76.

  13. Kiddell, C. B., Cloutis, E. A., Dagdick, B. R., Stromberg, J. M., Applin, D. M., & Mann, J. P. (2018). Spectral reflectance of powder coatings on carbonaceous chondrite slabs: Implications for asteroid regolith observations. Journal of Geophysical Research: Planets,123(10), 2803–2840.

  14. Kring, D. A., Melosh, H. J., & Hunten, D. M. (1996). Impact-induced perturbations of atmospheric sulfur. Earth and Planetary Science Letters,140(1–4), 201–212.

  15. Lauretta, D. S., DellaGiustina, D. N., Bennett, C. A., Golish, D. R., Becker, K. J., Balram-Knutson, S. S., et al. (2019). The unexpected surface of asteroid (101955) Bennu. Nature,568(7750), 55–60.

  16. Lazzaro, D., Barucci, M. A., Perna, D., Jasmim, F. L., Yoshikawa, M., & Carvano, J. M. F. (2013). Rotational spectra of (162173) 1999 JU3, the target of the Hayabusa2 mission. Astronomy & Astrophysics.

  17. Le Corre, L., Sanchez, J. A., Reddy, V., Takir, D., Cloutis, E. A., Thirouin, A., et al. (2018). Ground-based characterization of Hayabusa2 mission target asteroid 162173 Ryugu: constraining mineralogical composition in preparation for spacecraft operations. Monthly Notices of the Royal Astronomical Society,475(1), 614–623.

  18. Lewis, J. S. (1996). Mining the sky: Untold riches from the asteroids, comets, and planets (p. 274). New York: Basic Books.

  19. Mazanek, D. D., Merrill, R. G., Brophy, J. R., & Mueller, R. P. (2015). Asteroid Redirect Mission concept: A bold approach for utilizing space resources. Acta Astronautica,117, 163–171.

  20. Metzger, P. T., Britt, D. T., Covey, S., Schultz, C., Cannon, K. M., Grossman, K. D., et al. (2019). Measuring the fidelity of asteroid regolith and cobble simulants. Icarus,321, 632–646.

  21. Michikami, T., Honda, C., Miyamoto, H., Hirabayashi, M., Hagermann, A., Irie, T., et al. (2019). Boulder size and shape distributions on asteroid Ryugu. Icarus,331, 179–191.

  22. Miyamoto, M., Arai, T., Komatsu, M., Yamamoto, A., & Mikouchi, T. (2009). Evaluation of a curve-fitting method for diffuse reflectance spectra in the UV–Visible–NIR wavelength region. Polar Science,3(2), 110–116.

  23. Miyamoto, H., Kargel, J. S., Fink, W., & Furfaro, R. (2008). Granular processes on Itokawa, a small near-Earth asteroid: Implications for resource utilization. Space Exploration Technologies.

  24. Miyamoto, H., Niihara, T., Wada, K., Ogawa, K., Baresi, N., Abell, P., & Fukui, K. (2018) Phobos environment model and regolith simulant for MMX mission. In 48th lunar and planetary science conference, 2083.

  25. Miyamoto, H., Yano, H., Scheeres, D. J., Abe, S., Barnouin-Jha, O., Cheng, A. F., et al. (2007). Regolith migration and sorting on asteroid Itokawa. Science,316(5827), 1011–1014.

  26. Moskovitz, N. A., Abe, S., Pan, K. S., Osip, D. J., Pefkou, D., Melita, M. D., et al. (2013). Rotational characterization of Hayabusa II target Asteroid (162173) 1999 JU3. Icarus,224(1), 24–31.

  27. Muller, T. G., Durech, J., Ishiguro, M., Mueller, M., Kruhler, T., Yang, H., et al. (2017). Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object’s spin-axis orientation. Astronomy & Astrophysics.

  28. Murdoch, N., Sanchez, P., Schwartz, S. R., & Miyamoto, H. (2015). Asteroid surface geophysics. In P. Mithcel, et al. (Eds.), Asteroids IV (pp. 767–792). Tucson: University of Arizona Press.

  29. O’Leary, B. (1977). Mining the Apollo and Amor asteroids. Science,197(4301), 363–366.

  30. Pajola, M., Lazzarin, M., Ore, C. M. D., Cruikshank, D. P., Roush, T. L., Magrin, S., et al. (2013). Phobos as a D-type captured asteroid, spectral modeling from 0.25 to 4.0 μm. Astrophysical Journal,777(2), 127.

  31. Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, M. T., Nathues, A., et al. (2012). Dawn at Vesta: Testing the protoplanetary paradigm. Science,336(6082), 684–686.

  32. Saito, J., Miyamoto, H., Nakamura, R., Ishiguro, M., Michikami, T., Nakamura, A. M., et al. (2006). Detailed images of asteroid 25143 Itokawa from Hayabusa. Science,312(5778), 1341–1344.

  33. Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E., & Hiroi, T. (2001). Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature,410(6828), 555–557.

  34. Schmedemann, N., Kneissl, T., Ivanov, B. A., Michael, G. G., Wagner, R. J., Neukum, G., et al. (2014). The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planetary and Space Science,103, 104–130.

  35. Stoeser, D. B., Wilson, S. A., Fikes, J., McLemore, C., & Rickman, D. (2008). Development of lunar highland regolith simulants, NU-LHT-1 M,-2M. Geochimica et Cosmochimica Acta,72(12), A902–A902.

  36. Sugita, S., Honda, R., Morota, T., Kameda, S., Sawada, H., Tatsumi, E., et al. (2019). The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science,364(6437), 252.

  37. Tonui, E., Zolensky, M., Hiroi, T., Nakamura, T., Lipschutz, M. E., Wang, M. S., et al. (2014). Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites. Geochimica et Cosmochimica Acta,126, 284–306.

  38. Tsuda, Y., Yoshikawa, M., Abe, M., Minamino, H., & Nakazawa, S. (2013). System design of the Hayabusa 2-Asteroid sample return mission to 1999 JU3. Acta Astronautica,91, 356–362.

  39. Veverka, J., Thomas, P., Harch, A., Clark, B., Bell, J. F., Carcich, B., et al. (1997). NEAR’s flyby of 253 Mathilde: Images of a C asteroid. Science,278(5346), 2109–2114.

  40. Vilas, F. (2008). Spectral characteristics of Hayabusa 2 near-Earth asteroid targets 162173 1999 JU3 and 2001 QC34. Astronomical Journal,135(4), 1101–1105.

  41. Wada, K., Grott, M., Michel, P., Walsh, K. J., Barucci, A. M., Biele, J., et al. (2018). Asteroid Ryugu before the Hayabusa2 encounter. Progress in Earth and Planetary Science,5, 82.

  42. Walsh, K. J. (2018). Rubble Pile Asteroids. Annual Review of Astronomy and Astrophysics,56(1), 593–624.

  43. Watanabe, S., Hirabayashi, M., Hirata, N., Hirata, N., Noguchi, R., Shimaki, Y., et al. (2019). Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile. Science,364(6437), 268–272.

  44. Willman, B. M., Boles, W. W., Mckay, D. S., & Allen, C. C. (1995). Properties of lunar soil simulant Jsc-1. Journal of Aerospace Engineering,8(2), 77–87.

  45. Wilson, L., Keil, K., Browning, L. B., Krot, A. N., & Bourcier, W. (1999). Early aqueous alteration, explosive disruption, and reprocessing of asteroids. Meteoritics & Planetary Science,34(4), 541–557.

  46. Yano, H., Kubota, T., Miyamoto, H., Okada, T., Scheeres, D., Takagi, Y., et al. (2006). Touchdown of the Hayabusa spacecraft at the Muses sea on Itokawa. Science,312(5778), 1350–1353.

  47. Zeng, X. J., Li, X. Y., Martin, D. J. P., Tang, H., Yu, W., Yang, K., et al. (2019). The Itokawa regolith simulant IRS-1 as an S-type asteroid surface analogue. Icarus,333, 371–384.

Download references


The authors appreciate Naoyoshi Imachi of Ube Kyoritsu Sangyo Inc. for providing raw materials and professional knowledge. The authors thank Katsuro Mogi, Ryodo Hemmi, Yoshihiro Hidaka, Ayaka Oyanagi, and Kohei Funaki for their help for preparing the simulants. We also thank Drs. Mutsumi Komatsu and Takashi Mikouchi for support on spectral measurements. This work is financially supported in part by JAXA, KAKENHI 17H02953, and TeNQ/Tokyo Dome.

Author information

Correspondence to Hideaki Miyamoto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, H., Niihara, T. Simplified Simulated Materials of Asteroid Ryugu for Spacecraft Operations and Scientific Evaluations. Nat Resour Res (2020).

Download citation


  • Simulant
  • Asteroid
  • Regolith
  • Space mission
  • ISRU
  • Space resource