Interpretation of Magnetic Data Through Particle Swarm Optimization: Mineral Exploration Cases Studies

  • Khalid S. Essa
  • Mahmoud ElhusseinEmail author
Original Paper


This paper emphasizes the use of the particle swarm optimization to infer second moving average residual magnetic anomalies. This approach was used to remove the impact of the regional background up to the third-order polynomial by applying filters of successive window lengths. The body parameters evaluated are the amplitude coefficient, depth, magnetization angle, location of the object, and target shape. After that, the root mean squared error was calculated to compare the measured and calculated magnetic anomalies (the misfit). This proposed technique was utilized for synthetic examples as follows: The first model explains the effect of introducing noise, the second model demonstrates the impact of an interfering structure, and the third model shows the influence of a third-order regional magnetic field. Furthermore, this method was connected to three real examples from diabase dike and chromite ore exploration in Canada, Turkey, and Egypt. In all the cases, the assessed body parameters reasonably approximate the known values.


Particle swarm optimization Second moving average method Depth Mineral exploration 



The authors would like to thank Prof. Dr. John Carranza, Editor-in-Chief, and the reviewers for their keen interest, valuable comments on the manuscript, and improvements to this work.


  1. Abdelrahman, E. M., Abo-Ezz, E. R., & Essa, K. S. (2012). Parametric inversion of residual magnetic anomalies due to simple geometric bodies. Exploration Geophysics,43, 178–189.CrossRefGoogle Scholar
  2. Abdelrahman, E. M., Abo-Ezz, E. R., Essa, K. S., El-Araby, T. M., & Soliman, K. S. (2007a). A new least-squares minimization approach to depth and shape determination from magnetic data. Geophysical Prospecting,55, 433–446.CrossRefGoogle Scholar
  3. Abdelrahman, E. M., El-Araby, H. M., El-Araby, T. M., & Essa, K. S. (2003). A least-squares minimization approach to depth determination from magnetic data. Pure and Applied Geophysics,160, 1259–1271.CrossRefGoogle Scholar
  4. Abdelrahman, E. M., El-Araby, T. M., El-Araby, H. M., & Essa, K. S. (2002). A new approach to depth determination from magnetic anomalies. Geophysics,67, 1524–1531.CrossRefGoogle Scholar
  5. Abdelrahman, E. M., El-Araby, T. M., & Essa, K. S. (2009a). Shape and depth determination from second moving average residual self-potential anomalies. Journal of Geophysics and Engineering,6, 43–52.CrossRefGoogle Scholar
  6. Abdelrahman, E. M., El-Araby, T. M., Soliman, K. S., Essa, K. S., & Abo-Ezz, E. R. (2007b). Least-squares minimization approaches to interpret total magnetic anomalies due to spheres. Pure and Applied Geophysics,164, 1045–1056.CrossRefGoogle Scholar
  7. Abdelrahman, E. M., & Essa, K. S. (2005). Magnetic interpretation using a least-squares, depth-shape curves method. Geophysics,70, L23–L30.CrossRefGoogle Scholar
  8. Abdelrahman, E. M., & Essa, K. S. (2015). A new method for depth and shape determinations from magnetic data. Pure and Applied Geophysics,172, 439–460.CrossRefGoogle Scholar
  9. Abdelrahman, E. M., Essa, K. S., El-Araby, T., & Abo-Ezz, E. R. (2016). Depth and shape solutions from second moving average residual magnetic anomalies. Exploration Geophysics,47, 58–66.CrossRefGoogle Scholar
  10. Abdelrahman, E. M., Soliman, K. S., El-Araby, T. M., Abo-Ezz, E. R., & Essa, K. S. (2009b). A least-squares standard deviation method to interpret magnetic anomalies due to thin dikes. Near Surface Geophysics,7, 41–46.CrossRefGoogle Scholar
  11. Abdmouleh, Z., Gastli, A., Ben-Brahim, L., Haouari, M., & Al-Emadi, N. A. (2017). Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renewable Energy,113, 266–280.CrossRefGoogle Scholar
  12. Abo-Ezz, E. R., & Essa, K. S. (2016). A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula. Pure and Applied Geophysics,173, 1265–1278.CrossRefGoogle Scholar
  13. Afshar, A., Norouzi, G. H., Moradzadeh, A., & Riahib, M. A. (2018). Application of magnetic and gravity methods to the exploration of sodium sulfate deposits, case study: Garmab mine, Semnan, Iran. Journal of Applied Geophysics,159, 586–596.CrossRefGoogle Scholar
  14. Akca, I., Günther, T., Müller-Petke, M., Başokur, A. T., & Yaramanci, U. (2014). Joint parameter estimation from magnetic resonance and vertical electric soundings using a multi-objective genetic algorithm. Geophysical Prospecting,62, 364–376.CrossRefGoogle Scholar
  15. Armaghani, D. J., Hajihassani, M., Yazdani Bejarbaneh, B., Marto, A., & Mohamad, E. T. (2014). Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement,55, 487–498.CrossRefGoogle Scholar
  16. Balkaya, C., Ekinci, Y. L., Göktürkler, G., & Turan, S. (2017). 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm. Journal of Applied Geophysics,136, 372–386.CrossRefGoogle Scholar
  17. Biswas, A. (2016). Interpretation of gravity and magnetic anomaly over thin sheet-type structure using very fast simulated annealing global optimization technique. Modeling Earth Systems and Environment,2, 30.CrossRefGoogle Scholar
  18. Biswas, A. (2018). Inversion of source parameters from magnetic anomalies for mineral/ore deposits exploration using global optimization technique and analysis of uncertainty. Natural Resources Research,27, 77–107.CrossRefGoogle Scholar
  19. Biswas, A., & Acharya, T. (2016). A Very Fast Simulated Annealing (VFSA) method for inversion of magnetic anomaly over semi-infinite vertical rod-type structure. Modeling Earth Systems and Environment,2, 198.Google Scholar
  20. Biswas, A., Parija, M. P., & Kumar, S. (2017). Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke. Annals of Geophysics,60(2), G0218.CrossRefGoogle Scholar
  21. Cooper, G. R. J. (2016). Applying the tilt-depth and contact-depth methods to the magnetic anomalies of thin dykes. Geophysical Prospecting,65, 316–323.CrossRefGoogle Scholar
  22. Di Maio, R., Rani, P., Piegari, E., & Milano, L. (2016). Self-potential data inversion through a genetic-price algorithm. Computers & Geosciences,94, 86–95.CrossRefGoogle Scholar
  23. Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the IEEE. The sixth symposium on micro machine and human centre. Nagoya, Japan (pp. 39–43).Google Scholar
  24. Ekinci, Y. L. (2016). MATLAB-based algorithm to estimate depths of isolated thin dike-like sources using higher-order horizontal derivatives of magnetic anomalies. SpringerPlus,5, 1384.CrossRefGoogle Scholar
  25. Essa, K. S. (2019). A particle swarm optimization method for interpreting self potential anomalies. Journal of Geophysics and Engineering,16, 463–477.CrossRefGoogle Scholar
  26. Essa, K. S., & Elhussein, M. (2017). A new approach for the interpretation of magnetic data by a 2-D dipping dike. Journal of Applied Geophysics,136, 431–443.CrossRefGoogle Scholar
  27. Essa, K. S., & Elhussein, M. (2018a). PSO (particle swarm optimization) for interpretation of magnetic anomalies caused by simple geometrical structures. Pure and Applied Geophysics,175, 3539–3553.CrossRefGoogle Scholar
  28. Essa, K. S., & Elhussein, M. (2018b). Gravity data interpretation using new algorithms: A comparative study. In Z. Zouaghi (Ed.), Gravity-geoscience applications, industrial technology and quantum aspect. Croatia: InTech.Google Scholar
  29. Essa, K. S., & Elhussein, M. (2019). Magnetic interpretation utilizing a new inverse algorithm for assessing the parameters of buried inclined dike-like geologic structure. Acta Geophysica,67, 533–544.CrossRefGoogle Scholar
  30. Essa, K. S., Nady, A. G., Mostafa, M. S., & Elhussein, M. (2018). Implementation of potential field data to depict the structural lineaments of the Sinai Peninsula, Egypt. Journal of African Earth Sciences,147, 43–53.CrossRefGoogle Scholar
  31. Farquharson, C. G., & Craven, J. A. (2009). Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada. Journal of Applied Geophysics,68, 450–458.CrossRefGoogle Scholar
  32. Gay, P. (1963). Standard curves for interpretation of magnetic anomalies over long tabular bodies. Geophysics,28, 161–200.CrossRefGoogle Scholar
  33. Gay, P. (1965). Standard curves for magnetic anomalies over long horizontal cylinders. Geophysics,30, 818–828.CrossRefGoogle Scholar
  34. Gionfra, N., Sandou, G., Siguerdidjane, H., Faille, D., & Loevenbruck, P. (2019). Wind farm distributed PSO-based control for constrained power generation maximization. Renewable Energy,133, 103–117.CrossRefGoogle Scholar
  35. Godio, A., & Santilano, A. (2018). On the optimization of electromagnetic geophysical data: Application of the PSO algorithm. Journal of Applied Geophysics,148, 163–174.CrossRefGoogle Scholar
  36. Griffin, W. R. (1949). Residual gravity in theory and practice. Geophysics,14, 39–58.CrossRefGoogle Scholar
  37. Hinze, W. J., von Frese, R. R. B., & Saad, A. H. (2013). Gravity and magnetic exploration—Principles, practices, and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics,61, 394–408.CrossRefGoogle Scholar
  39. Liu, S., Hu, X., Liu, T., Xi, Y., & Zhang, H. (2015). Ant colony optimisation inversion of surface and borehole magnetic data under lithological constraints. Journal of Applied Geophysics,112, 115–128.CrossRefGoogle Scholar
  40. Lyakhov, A. O., Oganov, A. R., Stokes, H. T., & Zhu, Q. (2013). New developments in evolutionary structure prediction algorithm USPEX. Computer Physics Communications,184, 1172–1182.CrossRefGoogle Scholar
  41. McGrath, P. H., & Hood, P. J. (1970). The dipping dike case: A computer curve-matching method of magnetic interpretation. Geophysics,35, 831–848.CrossRefGoogle Scholar
  42. Mehanee, S. A., & Essa, K. S. (2015). 2.5D regularized inversion for the interpretation of residual gravity data by a dipping thin sheet: Numerical examples and case studies with an insight on sensitivity and non-uniqueness. Earth, Planets and Space,67, 130.CrossRefGoogle Scholar
  43. Mushayandebvu, M. F., Van Driel, P., Reid, A. B., & Fairhead, J. D. (2001). Magnetic source parameters of two-dimensional structures using extended Euler deconvolution. Geophysics,66, 814–823.CrossRefGoogle Scholar
  44. Nykänen, V., & Raines, G. L. (2006). Quantitative analysis of scale of aeromagnetic data raises questions about geologic-map scale. Natural Resources Research,15, 213–222.CrossRefGoogle Scholar
  45. Parsopoulos, K. E., & Vrahatis, M. N. (2002). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing,1, 235–306.CrossRefGoogle Scholar
  46. Portniaguine, O., & Zhdanov, M. S. (2002). 3-D magnetic inversion with data compression and image focusing. Geophysics,67, 1532–1541.CrossRefGoogle Scholar
  47. Prakasa Rao, T. K. S., & Subrahmanyam, M. (1988). Characteristic curves for inversion of magnetic anomalies of spherical ore bodies. Pure and Applied Geophysics,126, 67–83.CrossRefGoogle Scholar
  48. Rao, B. S. R., Prakasa Rao, T. K. S., & Krishna Murthy, A. S. (1977). A note on magnetized spheres. Geophysical Prospecting,25, 746–757.CrossRefGoogle Scholar
  49. Salem, A. (2005). Interpretation of magnetic data using analytic signal derivatives. Geophysical Prospecting,53, 75–82.CrossRefGoogle Scholar
  50. Salem, A., Aboud, E., Elsirafy, A., & Ushijima, K. (2005). Structural mapping of Quseir area, northern Red Sea, Egypt, using high-resolution aeromagnetic data. Earth, Planets and Space,57, 761–765.CrossRefGoogle Scholar
  51. Salem, A., Elsirafi, A., & Ushijima, K. (1999). Design and application of high-resolution aeromagnetic survey over Gebel Duwi area and its offshore extension, Egypt. Memoirs of the Faculty of Engineering, Kyushu University,59, 201–213.Google Scholar
  52. Salem, A., Ravat, D., Mushayandebvu, M. F., & Ushijima, K. (2004). Linearized least-squares method for interpretation of potential field data from sources of simple geometry. Geophysics,69, 783–788.CrossRefGoogle Scholar
  53. Singh, A., & Biswas, A. (2016). Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries. Natural Resources Research,25, 297–314.CrossRefGoogle Scholar
  54. Srivastava, S., & Agarwal, B. N. P. (2010). Inversion of the amplitude of the two-dimensional analytic signal of the magnetic anomaly by the particle swarm optimization technique. Geophysical Journal International,182, 652–662.CrossRefGoogle Scholar
  55. Srivastava, S., Datta, D., Agarwal, B. N. P., & Mehta, S. (2014). Applications of ant colony optimization in determination of source parameters from total gradient of potential fields. Near Surface Geophysics,12, 373–389.CrossRefGoogle Scholar
  56. Sun, S., Chen, C., & Liu, Y. (2018). Constrained 3D inversion of magnetic data with structural orientation and borehole lithology: A case study in the Macheng iron deposit, Hebei, China. Geophysics. Scholar
  57. Tao, G., Wang, G., & Zhang, Z. (2018). Extraction of mineralization-related anomalies from gravity and magnetic potential fields for mineral exploration targeting: Tongling Cu (–Au) District, China. Natural Resources Research,99, 99. Scholar
  58. Tlas, M., & Asfahani, J. (2015). The simplex algorithm for best-estimate of magnetic parameters related to simple geometric-shaped structures. Mathematical Geosciences,47, 301–316.CrossRefGoogle Scholar
  59. Todd, E. W. (1925). The Matabitchuan area: Ont. Dept. Mines Annual Report, 34, l–38.Google Scholar
  60. Venter, G., & Sobieski, J. (2002). Particle swarm optimization. In AIAA 2002-1235, 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Denver, CO.Google Scholar
  61. Yungul, S. (1956). Prospecting for chromite with gravimeter and magnetometer over rugged topography in east Turkey. Geophysics,21, 433–454.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2020

Authors and Affiliations

  1. 1.Department of Geophysics, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations