Advertisement

Geochemical Characteristics and Hydrocarbon Expulsion of Lacustrine Marlstones in the Shulu Sag, Bohai Bay Basin, Eastern China: Assessment of Tight Oil Resources

  • Zhipeng HuoEmail author
  • Xuan TangEmail author
  • Qingkuan Meng
  • Jinchuan Zhang
  • Changrong Li
  • Xiaofei Yu
  • Xue Yang
Original Paper
  • 19 Downloads

Abstract

In recent years, tight oil exploration has made significant progress in the lower part of Shahejie Formation (\( {\text{Es}}_{3} ^{{\text{L}}} \)) in the Shulu Sag, Bohai Bay Basin, Eastern China, which shows good exploration prospects for tight oil. However, accurate evaluation of tight oil resource potential is influenced by a lack of studies and an incomplete understanding of hydrocarbon expulsion from marlstone source rocks. This study investigated the geological and geochemical characteristics of marlstone source rocks, their hydrocarbon generation and expulsion, and the tight oil resource. Results show that the marlstone source rocks were deposited in a reducing to weakly oxidizing lacustrine environment with low-middle salinity, distributed widely in the central and southern troughs, with the maximum thickness greater than 700 m. The marlstone source rocks have relatively high organic matter abundance (0.06–7.97% of total organic carbon content with an average value of 1.51%), are dominated by type II and I kerogen, and are at the immature to mature stage (0.3% < vitrinite reflectance (VR) < 0.8%), which reveals fair–good source rocks for the marlstones. The threshold and peak of hydrocarbon expulsion for marlstone source rocks are at 0.51% VR and 0.6% VR, respectively. The amounts of generation and expulsion from marlstone source rocks are 19.72 × 108 t and 8.53 × 108 t, respectively, with an expulsion efficiency of 43%. The total tight oil resource in place is 10.9 × 108 (5.8 × 108 t within the carbonate rudstone reservoir and 5.1 × 108 t within the marlstone reservoir), indicating a significant tight oil potential and promising exploration prospect in the Shulu Sag, Bohai Bay Basin, Eastern China.

Keywords

Marlstone source rocks Geochemical characteristics Hydrocarbon generation and expulsion Tight oil Shulu Sag 

Notes

Acknowledgments

This work was supported by the Special grant of China Postdoctoral Science Foundation (2018T110124), Open Project of Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan (TPR-2016-06), University-Enterprise Cooperation Project of the PetroChina Huabei Oilfield Company (2014-0018963-HBYT-0003277). We also thank the Research Institute of Exploration and Development of PetroChina Huabei Oilfield Company for offering geochemical data of source rocks.

Supplementary material

11053_2019_9580_MOESM1_ESM.pdf (909 kb)
Supplementary material 1 (PDF 908 kb)

References

  1. Baskin, D. K. (1997). Atomic ratio H/C of kerogen as an estimate of thermal maturity and organic matter conversion. AAPG Bulletin,81, 1437–1450.Google Scholar
  2. Bazhenova, O. K., & Arefiev, O. A. (1990). Immature oils as the products of early catagenetic transformation of bacterial-algal organic matter. Organic Geochemistry,16(1–3), 307–311.CrossRefGoogle Scholar
  3. Bordenave, M. L., Esoitalie, J., Leolat, P., Qudin, J. L., & Vandenbroucke, M. (1993). Screening techniques for source rock evaluation. In M. L. Bordenave (Ed.), In Applied Petroleum Geochemistry (pp. 219–277). Paris: Technip.Google Scholar
  4. Burnham, A. K. (1989). On the validity of the pristane formation index. Geochimica et Cosmochimica Acta,53(7), 1693–1697.CrossRefGoogle Scholar
  5. Chen, Z. H., & Cha, M. (2005). Current situation and prospect of the investigation on hydrocarbon expulsion from source rocks. Advance in Earth Sciences,20(4), 459–466. (in Chinese with English abstract).Google Scholar
  6. Chen, J. Q., Pang, X. Q., Pang, H., Chen, Z. H., & Jiang, C. Q. (2018). Hydrocarbon evaporative loss evaluation of lacustrine shale oil based on mass balance method: Permian Lucaogou Formation in Jimusaer Depression, Junggar Basin. Marine Petroleum and Geology,91, 422–431.CrossRefGoogle Scholar
  7. Cooles, G. P., Mackenzie, A. S., & Quigley, T. M. (1986). Calculation of petroleum masses generated and expelled from source rocks. Organic Geochemistry,10, 235–245.CrossRefGoogle Scholar
  8. Durand, B., & Monin, J. C. (1980). Elemental analysis of kerogens (C, H, O, N, S, Fe). In kerogen: Editions Technip, Paris, (pp. 113–142).Google Scholar
  9. Espitalié, J., Laporte, L. J., Madec, M., Marquis, F., Leplat, P., Paulet, J., et al. (1977). Méthoderapide de caractérisation des rochesméres de leur potential petrolieret de leurdegréd’évolution. Revue de l’Institut français du Pétrole,32, 23–42.CrossRefGoogle Scholar
  10. Gehman, H. M. (1962). Organic matter in limestone. Geochimica et Cosmochimica Acta,26, 885–897.CrossRefGoogle Scholar
  11. Hakimi, M. H., Abdullah, W. H., Sia, S. G., & Makeen, Y. M. (2013). Organic geochemical and petrographic characteristics of Tertiary coals in the northwest Sarawak, Malaysia: Implications for palaeoenvironmental conditions and hydrocarbon generation potential. Marine and Petroleum Geology,48, 31–46.CrossRefGoogle Scholar
  12. Hu, G. Y., Li, Z. S., Luo, X., Li, J., Jiang, Z. S., & Wang, C. Y. (2004). Comparison of gas generation potential and model between two different thermal simulation systems. Acta Sedimentologica Sinica,22, 718–723. (in Chinese with English abstract).Google Scholar
  13. Hu, T., Pang, X. Q., Yu, S., Wang, X. L., Pang, H., Guo, J. G., et al. (2016). Hydrocarbon generation and expulsion characteristics of Lower Permian P1f source rocks in the Fengcheng area, northwest margin, Junggar Basin, NW China: Implications for tight oil accumulation potential assessment. Geological Journal,51(6), 880–900.CrossRefGoogle Scholar
  14. Huang, D. F., Zhang, D. J., Wang, P. R., Zhang, L. Y., & Wang, T. G. (2003). Genetic mechanism and accumulation condition of immature oil in China (p. 677). Beijing: Petroleum Industry Press. (in Chinese).Google Scholar
  15. Hunt, J. M. (1996). Petroleum geochemistry and geology (2nd ed., p. 743p). New York: W.H. Freeman and Company.Google Scholar
  16. Huo, Z. P., Pang, X. Q., Chen, J. Q., Zhang, J. C., Song, M. Z., Guo, K. Z., et al. (2019). Carbonate source rock with low total organic carbon content and high maturity as effective source rock in China: A review. Journal of Asian Earth Sciences,176, 8–26.CrossRefGoogle Scholar
  17. Jarvie, D.M. (2012). Shale resource systems for oil and gas: Part 2-shale-oil resource systems. In Breyer, J.A. (Ed.) Shale reservoirs-giant resources for the 21st Century (Vol. 97, pp. 89–119). AAPG Memoir.Google Scholar
  18. Jia, C. Z., Zou, C. N., Li, J. Z., Li, D. H., & Zheng, M. (2012). Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Petrolei Sinica,33(3), 343–350. (in Chinese with English abstract).Google Scholar
  19. Jiang, Q. C., Chen, Z. H., Mort, A., Milovic, M., Robinson, R., Stewart, R., et al. (2016a). Hydrocarbon evaporative loss from shale core samples as revealed by Rock-Eval and thermal desorption-gas chromatography analysis: its geochemical and geological implications. Marine Petroleum and Geology,70, 294–303.CrossRefGoogle Scholar
  20. Jiang, Z. X., Chen, D. Z., Qiu, L. W., Liang, H. B., & Ma, J. (2007). Source-controlled carbonates in a small Eocene half-graben lake basin (Shulu sag) in central Hebei Province. North China. Sedimentology,54(2), 265–292.CrossRefGoogle Scholar
  21. Jiang, F. J., Pang, X. Q., Bai, J., Zhou, X. H., Li, J. P., & Guo, Y. H. (2016b). Comprehensive assessment of source rocks in the Bohai Sea area. Eastern China. AAPG Bulletin,100(6), 969–1002.CrossRefGoogle Scholar
  22. Jiang, F. J., Pang, X. Q., Li, L. L., Wang, Q. C., Dong, Y. X., Hu, T., et al. (2018). Petroleum resources in the Nanpu sag, Bohai Bay Basin. Eastern China. AAPG Bulletin,102(7), 1213–1237.CrossRefGoogle Scholar
  23. Katz, B., & Lin, F. (2014). Lacustrine basin unconventional resource plays: Key differences. Marine and Petroleum Geology,56, 255–265.CrossRefGoogle Scholar
  24. Kuhn, P. P., di Primio, R., Hill, R., Lawrence, J. R., & Horsfield, B. (2012). Three-dimensional modeling study of the low-permeability petroleum system of the Bakken Formation. AAPG Bulletin,96, 1867–1897.CrossRefGoogle Scholar
  25. Lafargue, E., Espitalie, J., Jacobsen, T., & Eggen, S. (1990). Experimental simulation of hydrocarbon expulsion. Organic Geochemistry,16, 121–131.CrossRefGoogle Scholar
  26. Lee, Y.J. (1997). Geochemical characteristics of organic matter in the tertiary sediments from the JDZ Blocks offshore Korea. Korean Journal of Petroleum Geology,6, 25–36.Google Scholar
  27. Li, D. M. (2010). Research on hydrocarbon enrichment rules of gentle slop in half graben basin—the example of Shulu West Slope. Ph.D. Thesis (p. 135). China University of Geosciences, Beijing.Google Scholar
  28. Li, Q., You, X. L., Jiang, Z. X., Zhao, X. Z., & Zhang, R. F. (2017). A type of continuous petroleum accumulation system in the Shulu Sag, Bohai Bay Basin. Eastern China. AAPG Bulletin,101(11), 1791–1811.CrossRefGoogle Scholar
  29. Liang, H. B., Kuang, H. W., Liu, J. Q., Guo, Y. J., & Su, J. (2007). Discussion on origin for marls of the member 3 of Shahejie Formation of Paleogene in Shulu sag of central Hebei depression. Journal of Palaeogeography,9(2), 167–174. (in Chinese).Google Scholar
  30. Liang, D. G., Zeng, X. Z., & Wang, X. P. (2001). Oil and gas formation in Jizhong Depression (p. 231). Beijing: Petroleum Industry Press.Google Scholar
  31. Liu, Q. Y., Jin, Z. J., Gao, B., Zhang, D. W., & Tao, Y. (2010). Characterization of gas pyrolysates from different types of Permian source rocks in Sichuan Basin. Natural Gas Geoscience,21, 700–704. (in Chinese with English abstract).Google Scholar
  32. Mackenzie, A. S. (1984). Application of biological markers in petroleum chemistry. In J. Brooks & D. H. Welte (Eds.), Advances in petroleum geochemistry (pp. 115–214). London: Academic Press.CrossRefGoogle Scholar
  33. Magara, K. (1986). Geological models of petroleum entrapment. London: Elsevier Applied Science Publishers.Google Scholar
  34. National Energy Board. (2011). Tight oil developments in the Western Canada sedimentary basin [EB/OL]. [2011–2012]. www.Neb-one.gc.Ca/clf-nsi/mrgynfmtn/nrgyrprt/l/tghtdv-Iprmntwscb2011/tghtdvlpmntwcsb2011-eng.html.
  35. Obermajer, M., Dewing, K., & Fowler, M. G. (2010). Geochemistry of crude oil from Bent Horn field (Canadian Arctic Archipelago) and its possible Paleozoic origin. Organic Geochemistry,41, 986–996.CrossRefGoogle Scholar
  36. Orr, W. L. (1986). Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. In Leythaeuser, D., & Rullkotter, J. (Eds.) Advances in organic geochemistry 1985. Organic Geochemistry (Vol. 10, pp. 499–516).Google Scholar
  37. Palacas, J. G. (1984). Petroleum geochemistry and source rock potential of carbonate rocks. Tulsa, AAPG Studies in Geology (Vol. 18).Google Scholar
  38. Pang, X. Q., Li, M. W., Li, S. M., & Jin, Z. J. (2005). Geochemistry of petroleum systems in the Niuzhuang South Slope of Bohai Bay Basin: Part 3. Estimating hydrocarbon expulsion from the Shahejie Formation. Organic Geochemistry,36, 497–510.CrossRefGoogle Scholar
  39. Peng, J. W., Pang, X. Q., Shi, H. S., Peng, H. J., Xiao, S., Yu, Q. H., et al. (2016). Hydrocarbon generation and expulsion characteristics of Eocene source rocks in the Huilu area, northern Pearl River Mouth basin, South China Sea: implications for tight oil potential. Marine Petroleum and Geology,72, 463–487.CrossRefGoogle Scholar
  40. Pepper, A. S. (1992). Estimating the petroleum expulsion behaviour of source rocks: a novel quantitative approach. In W. A. England & A. L. Fleet (Eds.), Petroleum migration. Geological society (London) (pp. 9–31). London: Special Publication.Google Scholar
  41. Pepper, A. S., & Corvi, P. J. (1995). Simple kinetic models of petroleum formations. Part III: modeling an open system. Marine and Petroleum Geology,12, 417–452.CrossRefGoogle Scholar
  42. Peters, K. E. (1986). Guidelines of evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin,70(3), 318–329.Google Scholar
  43. Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry. In: Magoon, L. B., & Dow, W. G. (Eds.) The petroleum system—from source to trap (Vol. 60, pp. 93–120). AAPG Memoir.Google Scholar
  44. Peters, K. E., Walters, C. W., & Moldowan, J. M. (2005). The biomarker guide (2nd ed., p. 1155). Cambridge: Cambridge University Press.Google Scholar
  45. Pollastro, R. M., Cook, T. A., Roberts, L. N. R., Schenk, C. J., Lewan, M. D., Anna, L. O., Gaswirth, S. B., Lillis, P. G., Klett, T. R., & Charpentier, P. P. (2008). Assessment of undiscovered oil resources in the Devonian-Mississippian Bakken Formation, Williston Basin province, Montana and North Dakota, 2008. U.S. Geol. Surv. Fact. Sheet 3021. Virginia.Google Scholar
  46. Qin, J. Z. (2005). Source rocks in China (p. 620). Beijing: Science Press. (in Chinese with English abstract).Google Scholar
  47. Qin, J. Z., Wang, J., & Guo, A. M. (1997). Research on immature oils in the Jizhong Depression and its exploration prospect. Acta Petrolei Sinica,15(2), 105–108.Google Scholar
  48. Qiu, L. W., Ma, J., & Wang, L. F. (2006). Effect of tectonic movement in Paleogene on sedimentation of Shulu depression. Petroleum Geology and Recovery Efficiency,13(5), 3–6.Google Scholar
  49. Ritter, U. (2003). Solubility of petroleum compounds in kerogen: implications for petroleum expulsion. Organic Geochemistry,34, 219–326.CrossRefGoogle Scholar
  50. Sinninghe Damste, J. S., Kenig, F., Koopmans, M. P., Koster, J., Schouten, S., Hayes, J. M., et al. (1995). Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta,59, 1895–1900.CrossRefGoogle Scholar
  51. SY/T 5735-1995. Geochemical evaluation methods of terrestrial source rocks.Google Scholar
  52. Tang, X., Zhang, J. C., Jiang, Z. X., Zhang, R. F., Lan, C. L., Zhao, W. S., et al. (2018). Heterogeneity of organic-rich lacustrine marlstone succession and their controls to petroleum expulsion, retention, and migration: A case study in the Shulu Sag, Bohai Bay Basin, China. Marine Petroleum and Geology,96, 166–178.CrossRefGoogle Scholar
  53. Tannenbaum, E., & Aizenshtat, Z. (1985). Formation of immature asphalt from organic-rich carbonate rocks—I: Geochemical correlation. Organic Geochemistry,6, 503–511.CrossRefGoogle Scholar
  54. Tao, S., (2008). Evolution characteristics of source rocks and their pyrolysis of hydrocarbon generation and expulsion in the lower assemblages of key area, Southern China. Master thesis, China University of Geosciences, Beijing (in Chinese with English abstract).Google Scholar
  55. Tian, J. Z., Tian, R., Chen, K. Y., Chen, S. G., & Guo, Z. Q. (2017). Tight oil accumulation of the redeposited carbonates in the continental rift basin: A case study from Member 3 of Shahejie Formation in Shulu sag of Jizhong depression. North China. Petroleum Research,2(1), 77–89.CrossRefGoogle Scholar
  56. Tissot, B. P., Pelet, R., & Ungerer, P. H. (1987). Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bulletin,71, 1445–1466.Google Scholar
  57. Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence (p. 538). New York: Springer.CrossRefGoogle Scholar
  58. Van Krevelen, D. W. (1961). Coal (p. 514p). New York: Elsevier Science.Google Scholar
  59. Wang, S.C. (2014). Lacustrine marl reservoir formation and distribution of Shulu Sag. Ph.D. thesis, China University of Mining and Technology, Beijing (in Chinese with English abstract).Google Scholar
  60. Wang, X. L., Kuang, J., & Yang, H. B. (2014). The fourth round assessment of petroleum resources in Junggar Basin (Internal Report). Internal technical report of research institute of petroleum exploration and development, PetroChina Xinjiang Oilfield Company (in Chinese).Google Scholar
  61. Wang, T. G., Zhong, N. N., Hou, D. J., Huang, G. H., Bao, J. P., & Li, X. Q. (1995). Genetic mechanism and distribution of immature oils (p. 235). Beijing: Petroleum Industry Press. (in Chinese).Google Scholar
  62. Wu, L. Y. (1986). Fast quantitative evaluation method for source rocks on Rock-Eval pyrolysis (p. 198). Beijing: Science Press. (in Chinese).Google Scholar
  63. Waples, D.W. (1985). Geochemistry in Petroleum Exploration (p. 248p). Boston: IHRDC (International Human Resources Development Corporation).CrossRefGoogle Scholar
  64. Xu, S. H., He, S., & Yuan, C. P. (1995). A simulation model of histories of evolution and hydrocarbons generation and expulsion of source rocks. Earth Science,20(3), 335–341. (in Chinese with English abstract).Google Scholar
  65. Xue, H. T., Tian, S. S., Wang, W. M., Zhang, W. H., Du, T. T., & Mu, G. D. (2016). Correction of oil content-one key parameter in shale oil resource assessment. Oil & Gas Geology,37, 15-2. (In Chinese with English abstract).Google Scholar
  66. Zhang, T. F. (2005). Numerical methods of petroliferous basin modeling. Beijing: Petroleum Industry Press. (in Chinese).Google Scholar
  67. Zhang, J. C., Lin, L. M., Li, Y. X., Tang, X., Zhu, L. L., Xing, Y. W., et al. (2012). Classification and evaluation of shale oil. Earth Science Frontiers,19(5), 322–331. (in Chinese with English abstract).Google Scholar
  68. Zhao, X. Z., Jiang, Z. X., Zhang, R. F., Li, H. P., Yang, D. X., Cui, Z. Q., et al. (2015). Geological characteristics and exploration practices of special-lithology tight oil reservoirs in continental rift basins: a case study of tight oil in Shahejie Formation, Shulu sag. Acta Petrolei Sinica,36(S1), 1–9.Google Scholar
  69. Zhao, X. Z., Li, Q., Jiang, Z. X., Zhang, R. F., & Li, H. P. (2014a). Organic geochemistry and reservoir characterization of the organic matter-rich calcilutite in the ShuluSag, Bohai Bay Basin, North China. Marine Petroleum and Geology,51(2), 239–255.CrossRefGoogle Scholar
  70. Zhao, X. Z., Zhu, J. Q., Zhang, R. F., Yu, Z. W., Wang, J. M., & Guo, Y. J. (2014b). Characteristics and exploration potential of tight calcilutites-rudstone reservoirs in Shulu sag, Jizhong depression, North China. Acta Petrolei Sinica,35(4), 6–13. (in Chinese with English abstract).Google Scholar
  71. Zheng, L. J., Jiang, Z. X., Liu, H., Kong, X. X., Li, H. P., & Jiang, X. L. (2015). Core evidence of paleoseismic events in paleogene deposits of the Shulu Sag in the Bohai Bay Basin, East China, and their petroleum geologic significance. Sedimentary Geology,328, 33–54.CrossRefGoogle Scholar
  72. Zhou, J., & Pang, X. Q. (2002). A method for calculating the quantity of hydrocarbon generation and expulsion. Petroleum Exploration and Development,29(1), 24–27. (in Chinese with English abstract).Google Scholar
  73. Zhou, Q. F., & Yang, G. F. (2012). Definition and application of tight oil and shale oil terms. Oil & Gas Geology,33(4), 541–544. (in Chinese with English abstract).Google Scholar
  74. Zhu, H. Q., Pang, X. Q., Jiang, Z. X., & Dong, C. H. (2007). Studying methods and application of the hydrocarbon accumulation coefficient. Earth Science,32(3), 260–266. (in Chinese with English abstract).Google Scholar
  75. Zou, C. N., Yang, Z., Cui, J. W., Zhu, R. K., Hou, L. H., Tao, S. Z., et al. (2013a). Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Petroleum Exploration and Development,40(1), 15–27.CrossRefGoogle Scholar
  76. Zou, C. N., Yang, Z., Tao, S. Z., Yuan, X. J., Zhu, R. K., Hou, L. H., et al. (2013b). Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: the Ordos Basin, North-Central China. Earth Science Review,126, 358–369.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  1. 1.School of Energy ResourcesChina University of GeosciencesBeijingChina
  2. 2.Key Laboratory of Strategy Evaluation for Shale Gas of Ministry of Land and ResourcesChina University of GeosciencesBeijingChina
  3. 3.CNPC Logging Liaohe BranchPanjinChina
  4. 4.State Key Laboratory of Petroleum Resources and ProspectingChina University of PetroleumBeijingChina

Personalised recommendations