Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

3D Mineral Prospectivity Mapping with Random Forests: A Case Study of Tongling, Anhui, China

Abstract

In the past few decades, a variety of data-driven predictive modeling techniques has led to a dramatic advancement in mineral prospectivity mapping (MPM). The random forests (RF) algorithm, a machine learning method, has been applied successfully to data-driven MPM. However, there are two main challenges that need to be examined. Firstly, whether RF modeling can be used for the 3D MPM. The voxel (in 3D) has replaced the pixel (in 2D) to represent geological features, and so the capability of the RF model should be tested. Secondly, when we conduct regional-scale MPM, building a suitable conceptual model has a significant influence on the results; however, mineral deposit models often focus on just deposit-scale features. These two challenges were encountered in the case study in the Tongling ore cluster, which is the most representative skarn ore-concentrated area in the Middle–Lower Yangtze River Valley Metallogenic Belt in Eastern China. Thus, 3D geological models of the Tongling ore cluster were constructed from the multiple geological datasets. Then, a conceptual model was translated into 3D predictor layers. Finally, we tested and compared the MPM capabilities of the RF and compared it with weights-of-evidence (WofE) modeling. The results indicate that RF modeling not only outperforms WofE modeling in 3D MPM, but it also has capability to assess the relative importance of different predictor layers. Further testing of this method is warranted in other areas with different scales or metallogenic model to investigate fully its efficiency.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. Agterberg, F. P., & Bonham-Carter, G. F. (1990). Deriving weights of evidence from geoscience contour maps for the prediction of discrete events. In Proceedings of the 22nd APCOM symposium, Berlin, Germany (Vol. 2, pp. 381–395).

  2. Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research,14(1), 1–17.

  3. Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q., & Wright, D. F. (1993). Weights of evidence modeling and weighted logistic regression for mineral potential mapping. Computers in Geology,25, 13–32.

  4. Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In Computer applications in resource estimation (pp. 1–21). Elsevier.

  5. Agterberg, F. P., & Cheng, Q. (2002). Conditional independence test for weights-of-evidence modeling. Natural Resources Research,11(4), 249–255.

  6. Bonham-Carter, G. F. (2014). Geographic information systems for geoscientists: Modelling with GIS (Vol. 13). Amsterdam: Elsevier.

  7. Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights of evidence modelling: A new approach to mapping mineral potential. Statistical Applications in the Earth Sciences,89(9), 171–183.

  8. Breiman, L. (1984). Classification and regression trees. London: Chapman & Hall/CRC.

  9. Breiman, L. (1996). Bagging predictors. Machine Learning,24(2), 123–140.

  10. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Boca Raton: CRC Press.

  11. Breiman, L. E. O. (2001). Random forests. Machine Learning,45(1), 5–32.

  12. Breslow, N. E., & Cain, K. C. (1988). Logistic regression for two-stage case-control data. Biometrika,75(1), 11–20.

  13. Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences,47(4), 757–770.

  14. Cargill, S. M., & Clark, A. L. (1978). Report on the activity of IGCP Project 98. Mathematical Geology,10(5), 411–417.

  15. Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews,71, 777–787.

  16. Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences,74, 60–70.

  17. Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research,25(1), 35–50.

  18. Chang, Y. F., Liu, X. P., & Wu, Y.-C. (1991). The copper–iron belt of the lower and middle reaches of the Changjiang River (pp. 1–56). Beijing: Geological Publishing House.

  19. Chen, J., Lu, P., Wu, W., Zhao, J., & Hu, Q. (2007). A 3-D prediction method for blind orebody based on 3-D visualization model and its application. Earth Science Frontiers,14(5), 54–61.

  20. Chen, J. P., & Wang, C. (2012). Three-dimensional metallogenic prediction in Yongmei Region based on digital ore deposit model. Scientific and Technological Management of Land and Resources,29, 14–20.

  21. Cheng, Q. (2016). Fractal density and singularity analysis of heat flow over ocean ridges. Scientific Reports, 6(1).

  22. Cheng, Q., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research,8(1), 27–35.

  23. Chung, C. F. (1978). Computer program for the logistic model to estimate the probability of occurrence of discrete events. Energie, Mines et Ressources Canada.

  24. Chung, C.-J. F., & Agterberg, F. P. (1980). Regression models for estimating mineral resources from geological map data. Journal of the International Association for Mathematical Geology,12(5), 473–488.

  25. Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews,75, 16–28.

  26. Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters,27(4), 294–300.

  27. Grömping, U. (2009). Variable importance assessment in regression: Linear regression versus random forest. American Statistician,63(4), 308–319.

  28. Harris, D. P. (1968). Alaska’s base and precious metals’ resources: A probabilistic regional appraisal. University Park: Pennsylvania State University, College of Earth and Mineral Sciences.

  29. Harris, J. R., Sanborn-Barrie, M., Panagapko, D. A., Skulski, T., & Parker, J. R. (2006). Gold prospectivity maps of the Red Lake greenstone belt: Application of GIS technology. Canadian Journal of Earth Sciences,43(7), 865–893.

  30. King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis,9(2), 137–163.

  31. Li, N., Bagas, L., Li, X., Xiao, K., Li, Y., Ying, L., et al. (2016). An improved buffer analysis technique for model-based 3D mineral potential mapping and its application. Ore Geology Reviews,76, 94–107.

  32. Li, W. (1989). On the Yangtze type copper ore deposits and their origin. Bulletin of the Nanjing Institute Geology and Mineral Resources, Chinese Academy Geological Sciences,10(2), 1–14.

  33. Li, X., Yuan, F., Zhang, M., Jia, C., Jowitt, S. M., Ord, A., et al. (2015). Three-dimensional mineral prospectivity modeling for targeting of concealed mineralization within the Zhonggu iron orefield, Ningwu Basin, China. Ore Geology Reviews,71, 633–654.

  34. Li, X., Yuan, F., Zhang, M., Jowitt, S. M., Ord, A., Zhou, T., et al. (2019). 3D computational simulation-based mineral prospectivity modeling for exploration for concealed Fe–Cu skarn-type mineralization within the Yueshan orefield, Anqing district, Anhui Province, China. Ore Geology Reviews,105, 1–17.

  35. Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. R News,2, 18–22.

  36. Lippitt, C. D., Rogan, J., Li, Z., Eastman, J. R., & Jones, T. G. (2008). Mapping selective logging in mixed deciduous forest: A comparison of machine learning algorithms. Photogrammetric Engineering and Remote Sensing,74(10), 1201–1211.

  37. Liu, P., Mao, J., Yao, W., Wang, X., Jia, L., & Yang, H. (2017). Petrogenesis of the mafic microgranular enclaves (MMEs) and their host granodiorites from the Zijinshan intrusion along the Middle-Lower Yangtze River Valley: Implications for geod … Lithos Petrogenesis of the ma fi c microgranular enclaves (MMEs). Lithos,288–289(September), 1–19.

  38. Lü, Q., Qi, G., & Yan, J. (2012). 3D geologic model of Shizishan ore field constrained by gravity and magnetic interactive modeling: A case history. Geophysics,78(1), B25–B35.

  39. Lü, Q., Qi, G., & Yan, J. (2013). 3D geologic model of Shizishan ore field constrained by gravity and magnetic interactive modeling: A case history. Geophysics,78(1), 25–35.

  40. Malehmir, A., Thunehed, H., & Tryggvason, A. (2009). The Paleoproterozoic Kristineberg mining area, northern Sweden: Results from integrated 3D geophysical and geologic modeling, and implications for targeting ore deposits. Geophysics,74(1), B9.

  41. Mao, J., Xie, G., Duan, C., Pirajno, F., Ishiyama, D., & Chen, Y. (2011). A tectono-genetic model for porphyry-skarn-stratabound Cu–Au–Mo–Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews,43(1), 294–314.

  42. Mao, X., Zhang, B., Deng, H., Zou, Y., & Chen, J. (2016). Three-dimensional morphological analysis method for geologic bodies and its parallel implementation. Computers & Geosciences,96, 11–22.

  43. Mauriello, P., & Patella, D. (1999). Principles of probability tomography for natural-source electromagnetic induction fields. Geophysics,64(5), 1403–1417.

  44. McKay, G., & Harris, J. R. (2016). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research,25(2), 125–143.

  45. Nielsen, S. H. H., Cunningham, F., Hay, R., Partington, G., & Stokes, M. (2015). 3D prospectivity modelling of orogenic gold in the Marymia Inlier, Western Australia. Ore Geology Reviews,71, 578–591.

  46. Oh, H.-J., & Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea. Natural Resources Research,19(2), 103–124.

  47. Pan, Y., & Dong, P. (1999). The lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews,15(4), 177–242.

  48. Parker, J. A., Kenyon, R. V., & Troxel, D. E. (1983). Comparison of interpolating methods for image resampling. IEEE Transactions on Medical Imaging,2(1), 31–39.

  49. Porwal, A., & Carranza, E. J. M. (2015). Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews,71, 477–483.

  50. Porwal, A., Carranza, E. J. M., & Hale, M. (2001). Extended weights-of-evidence modelling for predictive mapping of base metal deposit potential in Aravalli Province, western India. Exploration and Mining Geology,10(4), 273–287.

  51. Porwal, A., Carranza, E. J. M., & Hale, M. (2006a). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research,15(1), 1–14.

  52. Porwal, A., Carranza, E. J. M., & Hale, M. (2006b). Bayesian network classifiers for mineral potential mapping. Computers & Geosciences,32(1), 1–16.

  53. Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.

  54. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews,71, 804–818.

  55. Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science,28(7), 1336–1354.

  56. Schill, W., Jöckel, K. H., Drescher, K., & Timm, J. (1993). Logistic analysis in case-control studies under validation sampling. Biometrika,80(2), 339–352.

  57. Shi, R., & Chen, J. (2015). On the massive metal accumulation on the eastern margin of the North China Craton and the prospecting evaluation—A case study of Jiaojia gold concentration belt. Geosciences Journal,19(4), 599–612.

  58. Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for kuroho deposits in the Hokuroku District, Japan. Mathematical Geology,28, 1017–1023.

  59. Story, M., & Congalton, R. G. (1986). Remote sensing brief accuracy assessment: A user’s perspective. Photogrammetric Engineering and Remote Sensing,52(3), 397–399.

  60. Wang, G., & Huang, L. (2012). 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China. Geoscience Frontiers,3(4), 483–491.

  61. Wang, G., Zhu, Y., Zhang, S., Yan, C., Song, Y., Ma, Z., et al. (2012). 3D geological modeling based on gravitational and magnetic data inversion in the Luanchuan ore region, Henan Province, China. Journal of Applied Geophysics,80, 1–11.

  62. Wang, J., Zuo, R., & Xiong, Y. (2019). Mapping mineral prospectivity via semi-supervised random forest. Natural Resources Research, 1–14 (accepted).

  63. Xiao, K., Li, N., Porwal, A., Holden, E. J., Bagas, L., & Lu, Y. (2015). GIS-based 3D prospectivity mapping: A case study of Jiama copper-polymetallic deposit in Tibet, China. Ore Geology Reviews,71, 611–632.

  64. Xu, X., Fan, Z., He, J., Liu, X., Liu, X., Xie, Q., et al. (2014). Metallogenic model for the copper-gold-polymetallic deposits in Shizishan ore-field, Tongling, Anhui Province. Acta Petrologica Sinica,30(4), 1054–1074.

  65. Yuan, F., Li, X., Zhang, M., Jowitt, S. M., Jia, C., Zheng, T., et al. (2014). Three-dimensional weights of evidence-based prospectivity modeling: A case study of the Baixiangshan mining area, Ningwu Basin, Middle and Lower Yangtze Metallogenic Belt, China. Journal of Geochemical Exploration,145, 82–97.

  66. Yusheng, Z., Shuzhen, Y., Xinduo, L., Fuquan, J., Xunruo, Z., Tianfeng, W., et al. (1992). Metallogenic regularity of iron and copper deposits in the Middle and Lower Valley of the Yangtze River. Mineral Deposits,11(1), 1–12.

  67. Zhai, Y. S., Yao, S. Z., Lin, X. D., Zhou, X. N., Wan, T. F., Jin, F. Q., et al. (1992). Fe–Cu–Au Metallogeny of the Middle-Lower Changjiang Region (p. 235). Beijing: Geological.

  68. Zhang, S., Xiao, K., Carranza, E. J. M., & Yang, F. (2019). Maximum entropy and random forest modeling of mineral potential: Analysis of gold prospectivity in the Hezuo–Meiwu district, west Qinling Orogen, China. Natural Resources Research,28(3), 645–664.

  69. Zhang, L., Zhou, T., Yuan, F., Fan, Y., & Cooke, D. R. (2011). Petrogenetic–metallogenetic setting and temporal–spatial framework of the Yueshan district, Anhui Province, east-central China. International Geology Review,53(5–6), 542–561.

  70. Zhang, Z. J., Zuo, R. G., & Xiong, Y. H. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences,59(3), 556–572.

  71. Zhao, P., Chen, J., & Zhang, S. (2003). The new development of “three components” quantitative mineral prediction. Earth Science Frontiers,10(2), 455–464.

  72. Zhou, T. F., Wang, S. W., Yuan, F., Fan, Y., Zhang, D. Y., Chang, Y. F., et al. (2016). Magmatism and related mineralization of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt. Yanshi Xuebao/Acta Petrologica Sinica,32(2), 271–288.

  73. Zuo, R. (2017). Machine learning of mineralization-related geochemical anomalies: A review of potential methods. Natural Resources Research,26(4), 457–464.

  74. Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences,37(12), 1967–1975.

  75. Zuo, R., Cheng, Q., & Agterberg, F. P. (2009). Application of a hybrid method combining multilevel fuzzy comprehensive evaluation with asymmetric fuzzy relation analysis to mapping prospectivity. Ore Geology Reviews,35(1), 101–108.

Download references

Acknowledgments

This study was financially supported by Project Nos. 2017YFC0601501 and 2017YFC0601502 from the National Key Research and Development Program of China, Project Nos. 1212010733806 and 1212011120140 from China National Mineral Resources Assessment Initiative.

Author information

Correspondence to Jie Xiang or Keyan Xiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Xiao, K., Carranza, E.J.M. et al. 3D Mineral Prospectivity Mapping with Random Forests: A Case Study of Tongling, Anhui, China. Nat Resour Res 29, 395–414 (2020). https://doi.org/10.1007/s11053-019-09578-2

Download citation

Keywords

  • mineral prospectivity mapping
  • 3D geological modeling
  • Random forests
  • Tongling ore cluster