Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops

  • Claudete Gindri RamosEmail author
  • Diego dos Santos de Medeiros
  • Leandro Gomez
  • Luis Felipe Silva Oliveira
  • Ivo André Homrich Schneider
  • Rubens Muller Kautzmann
Original Paper


This study was focused on physical, petrographical, mineralogical, and chemical characterization of a volcanic-rock mining by-product (dacite rock), as well as on greenhouse experiment with black oats and maize crops to evaluate the potential use of the by-product as soil re-mineralizer. The by-product sample was obtained from a quarry in the Nova Prata mining district in southern Brazil. The particle size distribution of the by-product and soil was determined by sieving. Dacite rock petrographic description was performed on a polished thin section by optical microscopy. The soil and dacite rock mineralogical phases were identified by X-ray diffraction. The by-product and soil chemical composition was determined by X-ray fluorescence. Inductively coupled plasma mass spectrometry was performed to determine potentially toxic elements, As, Cd, Hg and Pb in by-product. Additional chemical compositions of the by-product and soil were analyzed using a scanning electron microscope equipped with an energy dispersive X-ray detector. Black oats and, sequentially maize, crops were cultivated in a typical Hapludox soil treated with the by-product in a greenhouse. Five by-product doses (0, 906, 1813, 3625, and 7251 kg ha−1) were added into pots containing soil, each with seven replications. Responses to treatments were evaluated from dry matter production, nutritional status of the crops, and in the changes in soil properties after 70 days of each cultivation. The results showed that the by-product is composed of plagioclase, K-feldspar, quartz, clinopyroxene, smectites, and opaque minerals with apatite as accessory mineral. The addition of 3625 and 7251 kg ha−1 doses of the by-product substantially increased the dry matter yield in maize leaves. The Ca uptake by maize leaves cultivated in soil with 7251 kg ha−1 dose of the by-product was significantly higher in soil with other doses, and all by-product doses promoted high concentrations of Mg and Ca. The accumulated amounts of Ca, K, Mg and P indicated that they were enough to supply maize nutritional needs. Improvements in soil properties, such as high levels of Ca, K and P and low levels of exchangeable Al and Al saturation were observed. The results of the study suggest that the by-product can be used as soil re-mineralizer. The dacite rock by-product studied here has potential to be an environmental solution to soil fertilization problem because it does not require chemical processing and can be used as it is mined.


Volcanic rock by-product Soil re-mineralization Agronomic efficiency Sustainable agriculture 



The authors are thankful to Geologists Magda Bergmann and Andrea Sander by important contributions in this research; to Agronomic Engineer Carlos Augusto Posser Silveira for the agronomic orientations; to Foundation for Research Support of the State of Rio Grande do Sul (FAPERGS), Edital 014/2012—BMT for financial support; to the Sindicato da Indústria de Extração de Pedreiras de Nova Prata for the supply of rock samples; and especially to James Hower for editing.


  1. ABNT. (1986). NBR 7181 Amostragem de solo: Preparação para ensaios de compactação e ensaios de caracterização. São Paulo: Associação Brasileira de Normas Técnicas (ABNT).Google Scholar
  2. Bakken, A. K., Gautneb, H., Sveistrup, T., & Myhr, K. (2000). Crushed rocks and mine tailings applied as K fertilizers on grassland. Nutrient Cycling in Agroecosystems, 56(1), 53–57.CrossRefGoogle Scholar
  3. Barbosa, J. Z., Motta, A. C. V., Consalter, R., & Pauletti, V. (2017). Wheat (Triticum aestivum L.) response to boron in contrasting soil acidity conditions. Revista Brasileira de Ciências Agrárias, 12, 148–157.CrossRefGoogle Scholar
  4. Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson, P. N., et al. (2018). Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 4(3), 138.CrossRefGoogle Scholar
  5. Bergmann, M., Juchen, P. L., Petroli, L., & Sander, A. (2017). Caracterização litoquímica e petrográfica de riodacitos vítreos mineralizados com ametista no RS: Possíveis fontes de potássio e multinutrientes para remineralização de solos. In M. Donato, L. C. Duarte, & F. S. Vilasboas (Eds.), Ações Aplicadas à cadeia produtiva de Gemas e Joias do Rio Grande do Sul (pp. 26–35). Porto Alegre: IGEO/UFRGS.Google Scholar
  6. Brazil. (2013). Lei 12.890/2013 de 10 de dezembro de 2013—Altera a Lei no 6.894, de 16 de dezembro de 1980. Accessed May 28, 2019.
  7. Cabot, C., Sibole, J. V., Barceló, J., & Poschenrieder, C. (2014). Lessons from crop plants struggling with salinity. Plant Science, 226, 2–13.CrossRefGoogle Scholar
  8. Carvalho, M. D., Nascente, A. S., Ferreira, G. B., Mutadiua, C. A., & Denardin, J. E. (2018). Phosphorus and potassium fertilization increase common bean grain yield in Mozambique. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(5), 308–314.CrossRefGoogle Scholar
  9. Ciceri, D., Oliveira, M., & Allanore, A. (2017). Potassium fertilizer via hydrothermal alteration of K-feldspar ore. Green Chemistry. Scholar
  10. Coelho, A. M., & França, G. E. (1995). Seja doutor do seu milho: nutrição e adubação. Piracicaba, SP: Potafos.Google Scholar
  11. Cordell, D., & White, S. (2011). Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability. Scholar
  12. Curi, N., Kampf, N., & Marques, J. J. (2005). Mineralogia e formas de potássio em solos brasileiros—Potássio na agricultura brasileira. Piracicaba, SP: Instituto da Potassa e do Fosfato.Google Scholar
  13. Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the rock-forming minerals (3rd ed.). London: The Mineralogical Society.Google Scholar
  14. Dumitru, I., Zdrilic, A., & Azzopardi, A. (1999). Soil Remineralisation with basaltic rock dust in Australia. Accessed November 19, 2018.
  15. Escosteguy, P. A. V., & Klamt, E. (1998). Ground basalt as nutrient source. Revista Brasileira de Ciência do Solo. Scholar
  16. Evans, H. (1947). Annual report. In: Investigations on the fertilizer value os crushed basaltic rock. Mauritius Sugar Cane Research Station, 18, 227.Google Scholar
  17. Fageria, N. K. (1998). Optimizing nutrient use efficiency in crop production. Revista Brasileira de Engenharia Agricola e Ambiental, 122, 122. Scholar
  18. Fageria, N. K. (2009). The use of nutrients in crop plants. Boca Raton, FL: CRC Press.Google Scholar
  19. Faquin, V. (1982). Efeito do tratamento térmico do sienito nefelínico adicionado de calcário dolomítico, na disponibilidade de potássio ao milho (Zea mays L.), em casa de vegetação. Tese de Mestrado. Escola Superior de Agricultura “Luiz de Queiroz”. Piracicaba, SP.Google Scholar
  20. Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L., Saikia, B. K., & Oliveira, L. F. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production, 208, 297–306.CrossRefGoogle Scholar
  21. Gilliham, M., Dayod, M., Hocking, B. J., Xu, B., Conn, S. J., Kaiser, B. N., et al. (2011). Calcium delivery and storage in plant leaves: Exploring the link with water flow. Journal of Experimental Botany, 62(7), 2233–2250.CrossRefGoogle Scholar
  22. Gillman, G. P., Burkett, D. C., & Coventry, R. J. (2001). A laboratory study of application of basalt dust to highly weathered soils: Effect on soil cation chemistry. Soil Research, 39(4), 799–811.CrossRefGoogle Scholar
  23. Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal, 4(2), 83–91.CrossRefGoogle Scholar
  24. Haynes, R. J. (2014). A contemporary overview of silicon availability in agricultural soils. Journal of Plant Nutrition and Soil Science, 177, 831–844.CrossRefGoogle Scholar
  25. Huggett, J. M. (2015). Clay minerals, reference module in earth systems and environmental sciences. Elsevier. Scholar
  26. Jones, J. B., Wolf, B., & Mills, H. A. (1991). Plant analysis handbook: A practical sampling, preparation, analysis, and interpreting guide. Athens, GA: Micro-Macro Publishing.Google Scholar
  27. Keeping, M. G. (2017). Uptake of silicon by sugarcane from applied sources may not reflect plant-available soil silicon and total silicon content of sources. Frontiers in Plant Science, 8, 760.CrossRefGoogle Scholar
  28. Korchagin, J., Caner, L., & Bortoluzzi, E. C. (2019). Variability of amethyst mining waste: A mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production, 210, 749–758.CrossRefGoogle Scholar
  29. Kronberg, B. I., Leonardos, O. H., Fyfe, W. S., Mattoso, S. Q., & Santos, A. M. (1976). Alguns dados geoquímicos sobre solos do Brasil: Uso potencial do pó de pedreira como fonte de nutrientes críticos em solos altamente lixiviados – com atenção de geoquímica de alguns solos da Amazônia. Ouro Preto, MG: SBG.Google Scholar
  30. Leonardos, O. H., Fyfe, W. S., & Kronberg, B. I. (1976). Rochagem O método de Aumento da Fertilidade em Solos Lixiviados e Arenosos. Belo Horizonte, MG: CBG.Google Scholar
  31. Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley.Google Scholar
  32. Machado, A. F, Lucena, G. N., Carneiro, J. S. S., Negreiros Neto, J. V., Santos, A. C., & Silva, R. R. (2014). Aproveitamento de rejeito de mineração na blendagem de calcário comercial para correção do solo. Accessed May 17, 2019.
  33. Malavolta, E., Vitti, G. C., & Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba, SP: Potafos.Google Scholar
  34. Manning, D. A., Baptista, J., Limon, M. S., & Brandt, K. (2017). Testing the ability of plants to access potassium from framework silicate minerals. Science of the Total Environment, 574, 476–481.CrossRefGoogle Scholar
  35. Manning, D. A., & Theodoro, S. H. (2018). Enabling food security through use of local rocks and minerals. The Extractive Industries and Society. Amsterdam: Elsevier. Scholar
  36. Melfi, A., Cerri, C. C., Fritsch, E., & Formoso, M. L. L. (1999). Tropical soils: genesis, distribution and degradation of lateritic pedological systems. In Workshop on topical soils. Rio de Janeiro, RJ: Academia Brasileira de Ciências, pp. 9–30.Google Scholar
  37. Meunier, A., Formoso, M. L. L., Patrier, P., & Chies, J. O. (1988). Altération hydrothermale de roches volcaniques liée à la genèse des améthystes-Bassin du Paraná-Sud du Brésil. Geochimica Brasiliensis, 2(2), 127–142.Google Scholar
  38. Motta, A. C. V., & Feiden, A. (1992). Avaliação do P em LE submetido a diferentes doses de basalto. Agrárias, 12(47), 54.Google Scholar
  39. Nascimento, M., & Loureiro, F. E. L. (2004). Fertilizantes e sustentabilidade: o potássio na agricultura brasileira, fontes e rotas alternativas. Série Estudos e Documentos 61. Rio de Janeiro, RJ: CETEM/MCT.Google Scholar
  40. Nieves-Cordones, M., Al Shiblawi, F. R., & Sentenac, H. (2016). Roles and transport of sodium and potassium in plants. In A. Sigel, H. Sigel, & R. Sigel (Eds.), The alkali metal ions: Their role for life (pp. 291–324). Cham: Springer.CrossRefGoogle Scholar
  41. Nowaki, R. H., Parent, S. É., Cecílio Filho, A. B., Rozane, D. E., Meneses, N. B., Silva, J. A., et al. (2017). Phosphorus over-fertilization and nutrient misbalance of irrigated tomato crops in Brazil. Frontiers in Plant Science, 8, 825.CrossRefGoogle Scholar
  42. Nunes, J. M. G., Kautzmann, R. M., & Oliveira, C. (2014). Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil). Journal of Cleaner Production, 84, 649–656.CrossRefGoogle Scholar
  43. Pauletti, V. (2004). Nutrientes: Teores e interpretações. Castro, PR: Fundação ABC para a Assistência e Divulgação Técnica Agropecuária.Google Scholar
  44. Piccoli, P. M., & Candela, P. A. (2002). Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48(1), 255–292.CrossRefGoogle Scholar
  45. Priyono, J., & Gilkes, R. J. (2008). High-energy milling improves the effectiveness of silicate rock fertilizers: A glasshouse assessment. Communications in Soil Science and Plant Analysis, 39(3–4), 358–369.CrossRefGoogle Scholar
  46. Ptáček, P. (2016). Apatites and their synthetic analogues: Synthesis, structure, properties and applications. BoD–Books on Demand. Accessed July 17, 2019.
  47. Querol, X., Whateley, M. K. G., Fernandez-Turiel, J. L., & Tuncali, E. (1997). Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology, 33(3), 255–271.CrossRefGoogle Scholar
  48. Rabel, D. O., Motta, A. C. V., Barbosa, J. Z., Melo, V. F., & Prior, S. A. (2018). Depth distribution of exchangeable aluminum in acid soils: A study from subtropical Brazil. Acta Scientiarum. Agronomy. Scholar
  49. Ramos, C. G., Querol, X., Dalmora, A. C., de Jesus Pires, K. C., Schneider, I. A. H., Oliveira, L. F. S., et al. (2017). Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. Journal of Cleaner Production, 142, 2700–2706.CrossRefGoogle Scholar
  50. Ramos, C. G., Querol, X., Oliveira, M. L., Pires, K., Kautzmann, R. M., & Oliveira, L. F. (2015). A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. Science of the Total Environment, 512, 371–380.CrossRefGoogle Scholar
  51. Ribes, R., Buss, R., Lazari, R., Potes, M., & Bamberg, A. (2012). Efeito de rochas moídas sobre a concentração de macronutrientes na parte áerea de plantas de milho. In Embrapa Clima Temperado. In Workshop Insumos Para Agricultura Sustentável, 2012, Pelotas. Anais… Pelotas: Embrapa Clima Temperado.Google Scholar
  52. Ridley, W. I. (2012). Petrology of associated igneous rocks. In C. P. Shanks III, R. Thurston (Eds.), Volcanogenic massive sulfide occurrence model. Virginia, U.S: Geological Survey Scientific Investigations Report 2010–5070–C, Virginia.Google Scholar
  53. Ros, C. O. D., Matsuoka, M., Silva, R. F. D., & Silva, V. R. D. (2017). Interference from the vertical variation of soil phosphorus and from water stress on growth in maize, the soybean and sunflower. Revista Ciência Agronômica, 48(3), 419–427.CrossRefGoogle Scholar
  54. Rosenstengel, L. M., & Hartmann, L. A. (2012). Geochemical stratigraphy of lavas and fault-block structures in the Ametista do Sul geode mining district, Paraná volcanic province, southern Brazil. Ore Geology Reviews, 48, 332–348.CrossRefGoogle Scholar
  55. Sade, H., Meriga, B., Surapu, V., Gadi, J., Sunita, M. S. L., Suravajhala, P., et al. (2016). Toxicity and tolerance of aluminum in plants: Tailoring plants to suit to acid soils. BioMetals, 29(2), 187–210.CrossRefGoogle Scholar
  56. Sánchez-Peña, N. E., Narváez-Semanate, J. L., Pabón-Patiño, D., Fernández-Mera, J. E., Oliveira, M. L., da Boit, K., et al. (2018). Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere, 191, 1048–1055.CrossRefGoogle Scholar
  57. Santos, W. O., Mattiello, E. M., Vergutz, L., & Costa, R. F. (2016). Production and evaluation of potassium fertilizers from silicate rock. Journal of Plant Nutrition and Soil Science, 179(4), 547–556.CrossRefGoogle Scholar
  58. Silva, R. C. (2016). Intemperismo de minerais de um remineralizador (p. 183). Tese (Doutorado), Piracicaba, SP: Escola Superior de Agricultura Luiz de Queiroz.Google Scholar
  59. Silva, L. F., Izquierdo, M., Querol, X., Finkelman, R. B., Oliveira, M. L., Wollenschlager, M., et al. (2011). Leaching of potential hazardous elements of coal cleaning rejects. Environmental Monitoring and Assessment, 175(1–4), 109–126.CrossRefGoogle Scholar
  60. Silveira, C. A. P., Ferreira, L. H. G., Pillon, C. N. Giacomini, S. J. E., & Santos, L. C. (2010). Efeito da combinação de calcário de xisto e calcário dolomítico sobre a produtividade de grãos de dois sistemas de rotação de culturas. Anais do I Congresso Brasileiro de Rochagem. Brasília. Embrapa. Brasília/DF: CBR.Google Scholar
  61. Sociedade Brasileira de Ciência do Solo—SBCS. (2004). Manual de Adubação e de Calagem: para os estados do Rio Grande do Sul e Santa Catarina. Porto Alegre, RS: Comissão de Química e Fertilidade do Solo.Google Scholar
  62. Streckeisen, A. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12, 1–33.CrossRefGoogle Scholar
  63. Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análise do solo plantas e outros materiais (2nd ed.). Porto Alegre, RS: Departamento de Solos da UFRGS.Google Scholar
  64. Theodoro, S. H., & Leonardos, O. H. (2006). The use of rocks to improve family agriculture in Brazil. Anais da Academia Brasileira de Ciências, 78(4), 721–730.CrossRefGoogle Scholar
  65. Theodoro, S. H., Leonardos, O. H., & de Almeida, E. (2010). Mecanismos para Disponibilização de Nutrientes Minerais a Partir de Processos Biológicos. Planaltina, DF: EMBRAPA.Google Scholar
  66. United States Department of Agriculture—USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Washington: Agriculture Handbook.Google Scholar
  67. Van Straaten, P. (2007). Agrogeology: The use of rocks for crops (No. 631.811 S894a). Ontario, CA: Enviroquest.Google Scholar
  68. Zhang, Y., Nachimuthu, G., Mason, S., McLaughlin, M. J., McNeill, A., & Bell, M. J. (2017). Comparison of soil analytical methods for estimating wheat potassium fertilizer requirements in response to contrasting plant K demand in the glasshouse. Scientific Reports, 7(1), 11391.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  • Claudete Gindri Ramos
    • 1
    Email author
  • Diego dos Santos de Medeiros
    • 1
  • Leandro Gomez
    • 2
  • Luis Felipe Silva Oliveira
    • 2
    • 3
  • Ivo André Homrich Schneider
    • 1
  • Rubens Muller Kautzmann
    • 4
  1. 1.Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Department of Civil and Environmental EngineeringUniversidad de la CostaBarranquillaColombia
  3. 3.Faculdade Meridional IMEDPasso FundoBrazil
  4. 4.Universidade La SalleCanoasBrazil

Personalised recommendations