Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Gravity Modeling of the Au–U Mineralized Crust at the North-Central Cameroon Illustrating Crustal Permeability

  • 93 Accesses

Abstract

The north-central Cameroon is located at the northern edge of Archean Congo–Sao Francisco craton and at the east of the West African craton. This area includes various Neoproterozoic to Holocene geological litho-structural units. It corresponds to a juvenile crust resulting from the collision of the above cratons. Geological features associated with the Poli–Ounianga–Kebir heavy gravity line trending NE–SW crosscuts the study area and hosts several deposits, chiefly auriferous and uraniferous ore deposits. Uraniferous bodies are described at the SW and NE sides of the Benue Trough and are related to hydrothermal processes and structural events in Neoproterozoic granitoids of Poli (Cameroon) and Zabili (Chad). Gold ore deposits are found around faulted zones mostly in the Tcholliré shear zone. Gravity data derived from the Earth Gravitational Model EGM2008, combining terrestrial, maritime and satellite-derived data, were used to model the crust of the north-central Cameroon. The geophysical filtering enabled to highlight that the most fractured areas with the deepest faults are situated on the positive anomalies of the mineralized volcano-sedimentary belts of Poli and Bibémi. The Benue Trough that crosscuts the volcano-sedimentary belts exposes few structural features due to the weak gravity signal of Cretaceous sedimentary cover. The radially averaged power spectrum analysis brought out the density contrast depths of some geological belts and revealed the Moho discontinuity of the study area at about 24 km depth. This Moho depth is in accordance with the assumption of a thin crust and a mantle upwelling in the study area proposed by previous works. Thus, the presence of geological formations of mantle, crustal and mixed crustal-mantle origin such as mafic rocks as well as calc-alkaline to alkaline granitoid outcropping in the study area may be the consequence of the proximity of the upper mantle to the surface. Moreover, fractures highlighted in this work brought out the crustal permeability in the study area illustrating migratory passages for mantle formations found at the surface. Based on the gravity field analysis, the proposed models of basement in this study provide geological architecture highlighting the presence of more or less dense rocks and hydrothermal fluids migration along faults as key elements for ore deposits formation.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Modified from Abate Essi et al. (2017)

Figure 6
Figure 7

Modified from Abate Essi et al. (2017)

Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

References

  1. Abate Essi, J. M., Marcel, J., Yene Atangana, J. Q., Diab, A. D., Fita, D. E., Mbossi, E. F., et al. (2017). Interpretation of gravity data derived from the Earth Gravitational Model EGM2008 in the Center-North Cameroon: Structural and mining implications. Arabian Journal of Geosciences,10, 130–132. https://doi.org/10.1007/s12517-017-2919-y.

  2. Akinlalu, A. A., Adelusi, A. O., Olayanju, K. A. N., Adiat, G. M., Omosuyi, G. O., Anifowose, A. Y. B., et al. (2018). Aeromagnetic mapping of basement structures and mineralisation characterisation of Ilesa Schist Belt, Southwestern Nigeria. Journal of African Earth Sciences, 138(2018), 383–391.

  3. Amante, C., & Eakins, B. W. (2008). ETOPO1 1arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum. NESDIS NGDC-24.

  4. Angoua, B. S. E., Bassahak, J., Béa, A. B., Hell, J. V., Kambou, R., Ngako, V., et al. (2008). Geological map of Cameroon, Poli Sheet NC -33-II. Center for Geological and Mining Research of Garoua, Ed. GEOS.

  5. Arefaee, H. A. (2017). Crustal modeling of the central part of the Northern Western Desert, Egypt using gravity data. Journal of African Earth Sciences,2017, 248–263.

  6. Atawa, M., Zouaghi, T., & Souei, A. (2016). Gravity constraints on the underground structural framework and associated volcanism of the Maghrebian allochthonous domain: The Sejnene Numidian flysch, Tunisian Tell. Journal of African Earth Sciences,116, 248–263. https://doi.org/10.1016/j.jafrearsci.2016.01.008.

  7. Barbarin, B. (1998). A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos,46, 605–626.

  8. Benkhelil, J. (1986). Structure and geodynamics evolution of the intracontinental Benue-Trough (Nigeria). Thesis, University of Nice, Pub Elf (Nigeria) Ltd. 202 p.

  9. Bierlein, F. P., Murphy, F. C., Weinberg, R. F., & Lees, T. (2006). Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: Targeting tools applied to the Eastern Goldfields, Yilgarn Craton, Western Australia. Miner Deposita,2005, 1–20. https://doi.org/10.1007/s00126-005-0044-4.

  10. Blakely, R. J. (1996). Potential theory in gravity and magnetic applications, 1980. Bose, MK: Cambridge University Press.

  11. Bouyo, H. M., Penaye, J., Njel, U. O., Moussango, A. P. I., Sep, N. J. P., Nyama, A. B., et al. (2015a). Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi Batholith in the Central African Fold Belt (CAFB) of northern Cameroon: Implications for tectonomagmatic evolution. Journal of African Earth Sciences,116, 9–41. https://doi.org/10.1016/j.jafrearsci.2015.12.005.

  12. Bouyo, H. M., Zhao, Y., Penaye, J., Zhang, S. H., & Njel, U. O. (2015b). Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone Belt of north-central Cameroon in the Central African Fold Belt: New insights into a continental arc geodynamic setting. Precambrian Research,261(2015), 40–53. https://doi.org/10.1016/j.precamres.2015.01.012.

  13. Caby, R. (1989). Precambrian terranes of Benin, Nigeria and Northeast Brazil and the late Proterozoic South Atlantic fit. Geological Society of America Special Paper,230, 145–158.

  14. Chicharro, E., Martín-Crespo, T., Gómez-Ortiz, D., López-García, J. A., Oyarzun, R., & Villaseca, C. (2015). Geology and gravity modeling of the Logrosán Sn–(W) ore deposits (Central Iberian Zone, Spain). Ore Geology Reviews,65, 294–307. https://doi.org/10.1016/j.oregeorev.2014.10.005.

  15. Collignon, L. (1968). Gravimétrie de reconnaissance de la République Fédérale du Cameroun. O.R.S.T.O.M. (Paris).

  16. Collignon, L. (1969). Contribution géophysique à l’étude du bassin de la Bénoué. O.R.S.T.O.M. (Paris).

  17. Cordell, L. (1973). Gravity analysis using an exponential density depth function-San Jacinto Graben, California. Geophysics,38(4), 684–690.

  18. Dawaï, D. (2014). Les plutons de Guider et de Bossoum-Pologozom (chaîne panafricaine au Nord-Cameroun): Analyse pétrographique, structurale, magnétique, géochronologique et implications géodynamiques. Thèse de Doctorat de l’Université de Toulouse-France en cotutelle avec l’Université de Ngaoundéré-Cameroun.

  19. Dawaï, D., Bouchez, J. L., Paquette, J. L., & Tchameni, R. (2013). The Pan-African quartz syenite of guider (north-Cameroon): Magnetic fabric and U-Pb dating of a late orogenic emplacement. Precambrian Research,236, 132–144. https://doi.org/10.1016/j.precamres.2013.07.008.

  20. Diab, D. A. (2016). Apport de la gravimétrie à la connaissance de la région du Ouaddai (Est du Tchad). Thèse Doctorat de l’Université de Yaoundé 1 (Cameroun).

  21. Eldursi, K., Branquet, Y., Guillou-Frottier, L., & Marcoux, E. (2009). Numerical investigation of transient hydrothermal processes around intrusions: Heat-transfer and fluid-circulation controlled lineralization patterns. Earth & Planetary Science Letters,208(2009), 70–83.

  22. Eloumala, O. P. N., Mouzong, P. M., & Ateba, B. (2014). Crustal Structure and Seismogenic Zone of Cameroon: Integrated seismic, geological and geophysical data. Open Journal of Earthquake Research,3, 152–161.

  23. Embui, V. F., Omang, B. O., Che, V. B., Nforba, M. T., & Suh, E. C. (2013). Gold grade variation and stream sediment geochemistry of the Vaimba-Lidi drainage system, northern Cameroon (West Africa). Natural Science,2013, 282–290. https://doi.org/10.4236/ns.2013.52A040.

  24. Eno Belinga, S. M. (1984). Géologie du Cameroun: Introduction, géodynamique externe, géologie historique, géologie du pétrole (p. 307). Yaounde: Librairie Universitaire, Université de Yaoundé.

  25. Essa, K. S. (2012). A fast interpretation method for inverse modeling of residual gravity anomalies caused by simple geometry. Journal of Geological Research,2012, 1–10. https://doi.org/10.1155/2012/327037.

  26. Eyike, A., Werner, S. C., Ebbing, J., & Manguelle-Dicoum, E. (2010). On the use of global potential field models for regional interpretation of the West and Central African Rift System. Tectonophysics,124906, 1–15. https://doi.org/10.1016/j.tecto.2010.04.026.

  27. Fan, Z., Huang, X., Tan, L., Yang, X., Zhang, H., Zhou, D., et al. (2014). A study of iron deposits in the Anshan area, China based on interactive inversion. Technique of gravity and magnetic anomalies. Ore Geology Reviews,57, 618–627. https://doi.org/10.1016/j.oregeorev.2013.09.017.

  28. Faure, S. (2010). Perméabilité crustale dans le Moyen-Nord québécois: Guide d’exploration géophysique pour l’or, l’uranium et le diamant. Rapport, Projet CONSOREM 20092010.

  29. Faure, S., Rafini, S., & Trepanier (2009). Paléopressions, perméabilité crustale et hydrothermalisme: Implications pour les minéralisations aurifères orogéniques en Albitibi. Rapport CONSOREM 2008-01.

  30. Fishwick, S., & Bastow, I. (2011). Towards a better understanding of African topography: A review of passive-source seismic studies of the African crust and upper mantle. The Geological Society of London,357, 343–371. https://doi.org/10.1144/SP357.19.

  31. Fullea, J., Fernàndez, M., & Zeyen, H. (2008). FA2BOUG-A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: Application to the Atlantic-Mediterranean transition zone. Computers and Geosciences, 34(12), 1665–1681. https://doi.org/10.1016/j.cageo.2008.02.018.

  32. Goussi, G. J. F., Bisso, D., Abdelsalam, M. G., Atekwana, E. A., Katumwehe, A. B., & Ekodeck, G. E. (2017). Geophysical imaging of metacratonizaton in the northern edge of the Congo craton in Cameroon. Journal of African Earth Sciences,2017, 1–13. https://doi.org/10.1016/j.jafrearsci.2016.12.010.

  33. Isseini, M. (2011). Croissance et différenciation crustales au Néoprotérozoïque: Exemple du domaine panafricain du Mayo Kebbi au Sud-Ouest du Tchad. Thèse de Doctorat, Université Henri Poincaré, Nancy I (France).

  34. Jaffal, M., El Goumi, N., Kchikach, A., Aïfa, T., Khattach, D., & Manar, A. (2010). Gravity and magnetic investigations in the Haouz basin, Morocco: Interpretation and mining implications. Journal of African Earth Sciences,58, 331–340. https://doi.org/10.1016/j.jafrearsci.2010.03.012.

  35. Jones-Cecil, M. (1995). Structural controls of Holocene reactivation of the Meers fault, southwestern Oklahoma, from magnetic studies. Geological Society of America Bulletin,107, 98–112.

  36. Koch, P. (1959). Carte géologique de reconnaissance du Cameroun au 1/500000ème. Feuille NC 33 SO 0 52 Garoua-Ouest, avec notice explicative. Publication de la Direction des Mines et de la Géologie du Cameroun. Imprimérie Nationale, Yaoundé-Cameroun.

  37. Kouske, A. P., Suh, C. E., Ghogomu, R. T., & Ngako, V. (2012). Na-Metasomatism and Uranium Mineralization during a Two-Stage Albitization at Kitongo, Northern Cameroon: Structural and Geochemical Evidence. International Journal of Geosciences,3, 258–279. https://doi.org/10.4236/ijg.2012.31028.

  38. Kusnir, I. (1995). Géologie, ressources minérales et ressources en eau du Tchad. CNAR, Ndjaména 2ème édition. et une carte.

  39. Kusnir, I., & Moutaye, H. A. (1997). Ressources minérales du Tchad: une revue. Journal of African Earth Sciences,24, 549–562.

  40. Laplaine, L. (1968). Carte minière et des indices du Cameroun à 1/2.000.000. IGN Paris.

  41. Lawther, S. E. M., Dempster, T. J., Shipton, Z. K., & Boyce, A. J. (2016). Effective crustal permeability controls fault evolution: An integrated structural, mineralogical and isotopic study in granitic gneiss, Monte Rosa, northern Italy. Tectonophysics,690(2016), 160–173. https://doi.org/10.1016/j.tecto.2016.07.010.

  42. Le Fur, Y. (1971). Les indices de cuivre du groupe volcanos6dimentaire de Poli (Cameroun). Bulletin Bureau Géologiques Minières, 2éme série, section II (6), 79–91.

  43. Lerouge, C., Bouchot, V., & Guerrot, C. (2000). Fluids and the W (+-As, Au) ore deposits of the Enguialès-Leucamp district, La Châtaigneraie, French Massif Central. Journal of Geochemical Exploration,69–70(2000), 343–347.

  44. Leseane, K., Atekwana, E. A., Mickus, K. L., Abdelsalam, M. G., Shemang, E. M., & Atekwana, E. A. (2015). Thermal perturbations beneath the incipient Okavango Rift Zone, northwest Botswana. Journal of Geophysical Research: Solid Earth—Wiley Online Library,120, 1210–1228. https://doi.org/10.1002/2014JB011029.

  45. Louis, P. (1970). Contribution géophysique à la connaissance géologique du bassin du Lac Tchad (p. 308). Paris: Mémoires ORSTOM.

  46. Marcel, J., Abate Essi, J. M., Njandjock Nouck, P., Meli’I, L. J., Mahamat, A., & Manguelle-Dicoum, E. (2018a). Geodynamic insights of the Cameroon Volcanic Line (Western Africa) from isostatic gravity anomalies. Journal of Geodynamics,121, 36–48. https://doi.org/10.1016/j.jog.2018.07.002.

  47. Marcel, J., Abate Essi, J. M., Njandjock Nouck, P., Oumarou, S., & Manguelle-Dicoum, E. (2018b). Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa). Earth, Planets and Space,70(42), 1–18. https://doi.org/10.1186/s40623-018-0812-x.

  48. Maurin, J. C., & Guiraud, R. (1990). Relations entre tectonique et sédimentation dans les bassins Barrémo-Aptiens du Nord-Cameroun. Comptes Rendus Geoscience Paris,308, 782–792.

  49. Maus, S., & Dimri, V. P. (1995). Depth estimation from the scaling power spectrum of potential fields? Geophysical Journal International, 124(1), 113–120.

  50. Mbaguedje, D. (2015). Métallogénie de l’or et de l’uranium dans le cadre de la croissance et de la différenciation de la croûte au Néoprotérozoïque: Exemple du massif du Mayo-Kebbi (Tchad) dans la Ceinture Orogénique d’Afrique Centrale. These doct Univ Lorraine.

  51. Naidu, P. S. (1968). Spectrum of the potential field due to randomly distributed sources. Geophysics,33, 337–345.

  52. NGA (Northwest Geophysical Associates). (2004). Gravity/magnetic modeling software GM-SYS, User’s Guide.

  53. Ngako, V., Affaton, P., & Njonfang, E. (2008). Pan-African tectonics in northwestern Cameroon: Implications for the history of western Gondwana. Gondwana Research,14, 509–522. https://doi.org/10.1016/j.gr.2008.02.002.

  54. Ngako, V., Jegouzo, P., & Soba, D. (1989). Déformation et métamorphisme dans la chaîne Pan-Africaine de Poli (Nord Cameroun): Implications géodynamiques et paléogéographiques. Journal of African Earth Sciences,9, 541–555.

  55. Ngako, V., Njonfang, E., & Nnange, J. M. (2006). The North-South Paleozoic to Quaternary trend of alkaline magmatism from Niger-Nigeria to Cameroon: Complex interaction between hotspots and Precambrian faults. Journal of African Earth Sciences,45, 241–256. https://doi.org/10.1016/j.jafrearsci.2006.03.003.

  56. Ngatchou, H. E., Liu, G., Tabod, C. T., Wang, Y., Kamguia, J., Nguiya, S., et al. (2014). Crustal structure beneath Cameroon from EGM2008. Geodesy and Geodynamics,5(1), 1–7.

  57. Ngounouno, I., Déruelle, B., Demaiffe, D., & Montigny, R. (1997). New data on the Cenozoic volcanism of the Garoua valley (Upper Benue trough, northern Cameroon). Comptes rendus Geoscience Paris,325, 87–94.

  58. Njel, U. O. (1986). Paléogéographie d’un segment de l’orogenèse panafricaine: la ceinture volcano-sédimentaire de Poli (Nord Cameroun). Comptes rendus Geoscience Paris,303, 1737–1742.

  59. Nolla, J. D., Hell, J. V., Ngos, S., III, Bessong, M., Mfoumbeng, M. P., Eyong Takem, J., et al. (2015). Lithostratigraphy of the Koum Basin (Northern Cameroon). International Journal of Multidisciplinary Research and Development,2(6), 103–114.

  60. Oesterlen, M., & Vetter, U. (1986). Petrographic-geochemical characteristics and genesis of an Albitized uraniferous granite in northern Cameroon, Africa “Vein type Uranium deposit”. IAEA, Vienna, IAEA-TECDOC-,361, 113–142.

  61. Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2008). An Earth Gravitational Model to degree 2160: EGM2008. Presented at the EGU General Assembly, Vienna, Austria, April (pp. 13–18).

  62. Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth gravitational model 2008 (EGM2008). Journal Geophysical Research,117, 1–38. https://doi.org/10.1029/2011JB008916.

  63. Pawlowski, R. S. (1994). Green’s equivalent-layer concept in gravity band-pass filter design. Geophysics,59, 69–76.

  64. Pawlowski, R. S. (1995). Preferential continuation for potential-field anomaly enhancement. Geophysics,60, 390–398.

  65. Penaye, J., Kröner, A., Toteu, S. F., Van Schmus, W. R., & Doumnang, J. C. (2006). Evolution of the Mayo Kebbi Region as Revealed by Zircon Dating: An Early (ca. 740 Ma) Pan-African Magmatic Arc in Southwestern Chad. Journal of African Earth Sciences,44, 530–542. https://doi.org/10.1016/j.jafrearsci.2005.11.018.

  66. Phillips, J. D. (1998). Processing and Interpretation of Aeromagnetic Data for the Santa Cruz Basin—Patahonia Mountains Area, South-Central Arizona. U.S. Geological Survey Open-File Report, Arizona (pp. 02–98).

  67. Pinna, P., Calvez, J. Y., Abessolo, A., Angel, J. M., Mekoulou-Mekoulou, T., Mananga, G., et al. (1994). Neoproterozoic Events in the Tcholliré Area, Pan African Crustal Growth and Geodynamics in Central-Northern Cameroon (Adamawa and North Provinces). Journal of African Earth Sciences,4, 347–353. https://doi.org/10.1016/0899-5362(94)90074-4.

  68. Pinna, P., Edimo, A., Jézéquel, J., Tchountchoui, D., & Ebotayuk-Ebop, M. (1989). Inventaire minier du Centre-Nord Cameroun, (troisième phase). Open-file Report 88 CMR 168. Bureau de Recherches Géologiques et Minières, France.

  69. Pouclet, A., Vidal, M., Doumnang, J. C., Vicat, J. P., & Tchameni, R. (2006). Neoproterozoic crustal evolution in southern Chad: Pan-African ocean basin closing, arc accretion and late- to post-orogenic granitic intrusion. Journal of African Earth Sciences,44, 543–560.

  70. Poudjom, D. Y. H. (1993). Apport de la Gravimétrie à l’étude de la Lithosphère continentale et implications géodynamiques. Etude d’un bombement intraplaque: Le massif de l’Adamaoua (Cameroun). Thèse de Doct/Ph.D, Université Paris-Sud, Centre d’Orsay. N° d’ordre 2798, Ed. ORSTOM.

  71. Rabeau, O. (2009). Distribution de l’or de type orogénique le long de grands couloirs de déformation Archéens: Modélisation numérique sur l’exemple de la ceinture de l’Abitibi. Thèse de l’Institut National Polytechnique de Loraine-Université du Québec.

  72. Radhakrishna, I. V., & Krishnamacharyulu, S. K. G. (1990). Polyfit: A Fortran 77 Program to fit a Polynomial of any order to Potential Field Anomalies. Journal of the Association of Exploration Geophysicists,2, 99–105.

  73. Rasmussen, R., & Pedersen, L. B. (1979). End corrections in potential field modeling. Geophysical Prospecting,27, 749–760.

  74. Reid, A. B., Allsop, J. M., Granser, H., Millet, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics,55, 180–191.

  75. Reyment, R. A., & Dingle, R. V. (1987). Paleogeography of Africa during the Cretaceous Period. Palaeogeography, Palaeoclimatology, Palaeoecology,59, 93–116.

  76. Schwoerer, P. (1962). Carte géologique de reconnaissance du Cameroun au 1/500000ème. Feuille NC 33 SO 0 53 Garoua-Est avec notice explicative. Publication de la Direction des Mines et de la Géologie du Cameroun. Imprimerie Nationale, Yaoundé Cameroun.

  77. Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics,135, 2983–3002.

  78. Stuart, G. W., Fairhead, J. D., & Dorbath, L. (1985). A seismic refraction study of the crustal structure associated with the Adamawa Plateau and Garoua rift, Cameroon, West Africa. Geophysical Journal of the Royal Astronomical Society,81, 1–12.

  79. Tchameni, R., Doumnang, J. C., Deudibaye, M., & Branquet, Y. (2013). On the occurrence of gold mineralization in the Pala Neoproterozoic formations, South-Western Chad. Journal of African Earth Sciences,84, 36–46.

  80. Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics (2nd ed.). Cambridge: Cambridge University Press.

  81. Tenthorey, E., & Fitz Gerald, J. D. (2006). Feedbacks between deformation, hydrothermal reaction and permeability evolution in the crust: Experimental insights. Earth & Planetary Science Letters,247(2006), 117–129. https://doi.org/10.1016/j.epsl.2006.05.005.

  82. Thomson, D. T. (1982). A new technique for making computer-assisted depth estimates from magnetic data. Geophysics,47, 31–37.

  83. Tokam, A. P., Tabod, C. T., Nyblade, A. A., Jordi, J., Wiens, D. A., & Pasyanos, M. E. (2010). Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions. Geophysical Journal International,183, 1061–1076.

  84. Toteu, S. F., Penaye, J., Deloule, E., Van Schmus, W. R., & Tchameni, R. (2006). Diachronous Evolution of Volcano-Sedimentary Basins North of the Congo Craton, Insights from U-Pb ion Microprobe Dating of Zircons from the Poli, Lom and Yaounde’ Groups (Cameroon). Journal of African Earth Sciences,44, 428–442. https://doi.org/10.1016/j.jafrearsci.2005.11.011.

  85. Toteu, S. F., Penaye, J., Deschamps, Y., Maldan, F., Nyama Atibagoua, B., Bouyo, et al. (2008). Géologie et ressources minérales du Cameroun 1/1.000.000. In 33rd International Congress, Oslo, Norway, August 2008, (pp. 6–14).

  86. Toteu, S. F., Penaye, J., & Poudjom, D. Y. H. (2004). Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences,41, 73–85. https://doi.org/10.1139/E03-079.

  87. Toteu, S. F., Van Schmus, W. R., Penaye, J., & Michard, A. (2001). New U-Pb and Sm-Nd data from north-central cameroon and its bearing on the Pre-Pan-African history of Central Africa. Precambrian Research,108, 45–73. https://doi.org/10.1016/S0301-9268(00)00149-2.

  88. Van Schmus, W. R., Oliveira, E. P., Da Silva Filho, A. F., Toteu, S. F., Penaye, J., & Guimães, I. P. (2008). Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. The Geological Society of London,294, 69–99. https://doi.org/10.1144/SP294.5.

  89. Wolfgang, J., & Smilde, P. L. (2009). Gravity interpretation: Fundamentals and application of gravity inversion and geological interpretation. Berlin: Springer.

  90. Won, I. J., & Bevis, M. (1987). Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines. Geophysics,52, 232–238.

  91. Yushan, Y., & Yuanyuan, L. (2017). Crustal structure of the Dabie orogenic belt (eastern China) inferred from gravity and magnetic data. Tectonophysics,17, 1–17. https://doi.org/10.1016/j.tecto.2017.12.016.

Download references

Author information

Correspondence to Jean Marcel Abate Essi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abate Essi, J.M., Marcel, J., Diab, D.A. et al. Gravity Modeling of the Au–U Mineralized Crust at the North-Central Cameroon Illustrating Crustal Permeability. Nat Resour Res 29, 473–497 (2020). https://doi.org/10.1007/s11053-019-09506-4

Download citation

Keywords

  • Mineralized crust
  • Gravity modeling
  • Faults
  • Crustal permeability
  • North-central Cameroon