Advertisement

Analysis of Drivers of Trends in Groundwater Levels Under Rice–Wheat Ecosystem in Haryana, India

  • Omvir SinghEmail author
  • Amrita Kasana
  • Krishan Pal Singh
  • Arjamadutta Sarangi
Original Paper
  • 37 Downloads

Abstract

In India, especially in the state of Haryana in the northwestern parts, groundwater is the key source of water supply for domestic, industrial and agricultural uses. In recent years, the dependence on groundwater has increased drastically over the state due to speedy expansion of area under rice–wheat cultivation and therefore the states’ aquifers have started experiencing over-exploitation. The aim of this study was to compute the magnitudes of groundwater level trends and abrupt change point detections spatially and temporally based on secondary data obtained from the Groundwater Cell, Department of Agriculture, Government of Haryana with respect to 118 community development blocks for pre- and post-monsoon seasons during 1990–2013. Three statistical models, namely Mann–Kendall test, Sen’s slope estimator and simple linear regression, were applied to understand the trend and rate of change in groundwater level, whereas the abrupt change point detection analysis was carried out using Pettitt’s test, standard normal homogeneity test, Buishand’s range test and von Neumann ratio test. The results indicate that the average depth to groundwater level during pre-monsoon season in the state has ranged from 3.42 to 43.90 m below ground level (mbgl), whereas the average depth to groundwater level during post-monsoon season has ranged from 2.48 to 43.68 mbgl. The mean of groundwater level fluctuations during pre- and post-monsoon seasons was found to be − 6.0 and − 6.7 mbgl, respectively. The study highlights that the negative (falling) trends are much more pronounced (significant at 0.01% probability level) than positive (rising) ones, which corroborate the unsustainable groundwater development in the state. The abrupt change point detection analysis of groundwater levels indicates toward different change points, with maximum change points between the years 2000–2006 during pre- and post-monsoon seasons. This can be attributed to the advanced transplanting of rice crop by farmers much before the start of rainy season. In addition, both anthropogenic and climatic factors have led to groundwater depletion in the study area. These findings may be helpful for the planners and policy makers toward judicious utilization of groundwater resources in the state.

Keywords

Over-exploitation Climatic Anthropogenic Mann–Kendall Sen’s slope estimator Linear regression Geographic information system Interpolation 

Notes

Acknowledgments

The authors are grateful for the critical and constructive comments made by two anonymous reviewers and Editor-in-Chief, which really improved the final manuscript. We also express our gratitude to Dr. Ashok Chauhan, Associate Professor, Department of Economics, Kurukshetra University, Kurukshetra, for helping us in conducting multiple linear regression analysis and fruitful discussions in interpreting the obtained results.

Supplementary material

11053_2019_9477_MOESM1_ESM.doc (750 kb)
Supplementary material 1 (DOC 750 kb)

References

  1. Aggarwal, R., Kaushal, M., Kaur, S., & Farmaha, B. (2009). Water resource management for sustainable agriculture in Punjab, India. Water Science and Technology, 60, 2905–2911.CrossRefGoogle Scholar
  2. Akther, H., Ahmed, M. S., & Rasheed, K. B. S. (2009). Spatial and temporal analysis of groundwater level fluctuation in Dhaka City, Bangladesh. Asian Journal of Earth Sciences, 1, 49–57.CrossRefGoogle Scholar
  3. Alexandersson, H. A. (1986). A homogeneity test applied to precipitation data. International Journal of Climatology, 6, 661–675.CrossRefGoogle Scholar
  4. Almedeij, J., & Al-Ruwaih, F. (2006). Periodic behaviour of groundwater level fluctuations in residential areas. Journal of Hydrology, 328, 677–684.CrossRefGoogle Scholar
  5. Amirataee, B., & Zeinalzadeh, K. (2016). Trends analysis of quantitative and qualitative changes in groundwater with considering the autocorrelation coefficients in west of Lake Urmia. Environmental Earth Sciences, 75, 371.CrossRefGoogle Scholar
  6. Anand, B., Karunanidhi, D., Subramani, T., Srinivsamoorthy, K., & Surseh, M. (2019). Long-term trend detection and spatiotemporal analysis of groundwater levels using GIS techniques in Lower Bhavani River Basin, Tamil Nadu, India. Environment, Development and Sustainability.  https://doi.org/10.1007/s10668-019-00318-3.Google Scholar
  7. Apaydin, H., Sonmez, F. K., & Yildirim, Y. E. (2004). Spatial interpolation techniques for climate data in the GAP region in Turkey. Climate Research, 28, 31–40.CrossRefGoogle Scholar
  8. Berg, M., Stengel, C., Trang, P. T. K., Viet, P. H., Sampson, M. L., Leng, M., et al. (2007). Magnitude of arsenic pollution in the Mekong and Red River deltas: Cambodia and Vietnam. Science of the Total Environment, 372, 413–425.CrossRefGoogle Scholar
  9. Bhanja, S. N., Mukherjee, A., Rodell, M., Wada, Y., Chattopadhyay, S., Velicogna, I., et al. (2017). Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Scientific Report, 7, 7453.CrossRefGoogle Scholar
  10. Biswas, B., Jain, S., & Rawat, S. (2018). Spatiotemporal analysis of groundwater levels and projection of future trend of Agra city, Uttar Pradesh, India. Arabian Journal of Geosciences, 11, 278.CrossRefGoogle Scholar
  11. Bui, D. D., Kawamura, A., Tong, T. N., Amaguchi, H., & Nakagawa, N. (2012). Spatiotemporal analysis of recent groundwater level trends in the Red River Delta, Vietnam. Hydrogeology Journal, 20, 1635–1650.CrossRefGoogle Scholar
  12. Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58, 11–27.CrossRefGoogle Scholar
  13. Burrough, P. H. (1986). Methods of spatial interpolation. Principles of geographic information systems for land resources assessment (pp. 147–166). Oxford: Clarendon Press.Google Scholar
  14. Caruso, C., & Quarta, F. (1998). Interpolation methods comparison. Computers & Mathematics with Applications, 35(12), 109–126.CrossRefGoogle Scholar
  15. CGWB (Central Ground Water Board). (2012). Groundwater year book. Faridabad: Central Ground Water Board, Ministry of Water Resources, Government of India.Google Scholar
  16. Chaudhuri, S., & Ale, S. (2014). Long-term (1930–2010) trends in groundwater levels in Texas: Influences of soils, land cover and water use. Science of the Total Environment, 490, 379–390.CrossRefGoogle Scholar
  17. Chawla, J. K., Khepar, S. D., Sondhi, S. K., & Yadav, A. K. (2010). Assessment of long-term groundwater behaviour in Punjab, India. Water International, 35, 63–77.CrossRefGoogle Scholar
  18. Chen, Z., Grasby, S. E., & Osadetz, K. G. (2004). Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. Journal of Hydrology, 290, 43–62.CrossRefGoogle Scholar
  19. Chinnasamy, P., & Agoramoorthy, G. (2015). Groundwater storage and depletion trends in Tamilnadu state, India. Water Resources Management, 29, 2139–2152.CrossRefGoogle Scholar
  20. Dunlap, L. E., & Spinazola, J. M. (1984). Interpolating water-table altitudes in west-central Kansas using kriging techniques. USGS Water-Supply Paper, 2238, 19.Google Scholar
  21. Fujihara, Y., Hoshikawa, K., Fujii, H., Kotera, A., Nagno, T., & Yokoyama, S. (2016). Analysis and attribution of trends in water levels in the Vietnamese Mekong Delta. Hydrological Processes, 30, 835–845.CrossRefGoogle Scholar
  22. Garg, N. K., & Hassan, Q. (2007). Alarming scarcity of water in India. Current Science, 93, 932–941.Google Scholar
  23. Ghanbari, R. N., & Bravo, H. R. (2011). Evaluation of correlations between precipitation, groundwater fluctuations, and lake level fluctuations using spectral methods (Wisconsin, USA). Hydrogeology Journal, 19, 801–810.CrossRefGoogle Scholar
  24. Goodin, W. R., Mcra, G. J., & Seinfeld, J. H. (1979). A comparison of interpolation methods for sparse data: Application to wind and concentration fields. Journal of Applied Meteorology, 18, 761–771.CrossRefGoogle Scholar
  25. Goyal, S. K., Chaudhary, B. S., Singh, O., Sethi, G. K., & Thakur, P. K. (2010). Variability analysis of groundwater levels: A GIS based case study. Journal of the Indian Society of Remote Sensing, 38, 355–364.CrossRefGoogle Scholar
  26. Guerreiro, S. B., Kilsby, C. G., & Serinaldi, F. (2014). Analysis of time variation of rainfall in transnational basins in Iberia: Abrupt changes or trends? International Journal of Climatology, 34, 114–133.CrossRefGoogle Scholar
  27. Hira, G. S. (2009). Water management in northern states and the food security of India. Journal of Crop Improvement, 23, 136–157.CrossRefGoogle Scholar
  28. Hoque, M. A., Hoque, M. M., & Ahmed, K. M. (2007). Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: Causes and quantification. Hydrogeology Journal, 15, 1523–1534.CrossRefGoogle Scholar
  29. Jaiswal, R. K., Lohani, A. K., & Tiwari, H. L. (2015). Statistical analysis for change detection and trend assessment in climatological parameters. Environmental Processes, 2, 729–749.CrossRefGoogle Scholar
  30. Jeelani, G. (2008). Aquifer response to regional climate variability in a part of Kashmir Himalaya in India. Hydrogeology Journal, 16, 1625–1633.CrossRefGoogle Scholar
  31. Kang, R., & Kaur, D. (2018). Spatial pattern of groundwater level changes in the irrigated agricultural region of Bist Doab, Punjab, India. Singapore Journal of Tropical Geography, 39, 75–89.CrossRefGoogle Scholar
  32. Kasana, A. (2017). Dynamics and economy of groundwater resources in Haryana. Unpublished Ph.D. Thesis submitted to Department of Geography, Kurukshetra University, Kurukshetra, India (pp. 47–56).Google Scholar
  33. Kaur, S., Aggarwal, R., & Soni, A. (2011). Study of water level behaviour for the Indian Punjab using GIS. Water Science and Technology, 63, 1574–1581.CrossRefGoogle Scholar
  34. Kaur, S., & Vatta, K. (2015). Groundwater depletion in central Punjab: Pattern, access and adaptations. Current Science, 108, 485–490.Google Scholar
  35. Kumar, V. (2007). Optimal contour mapping of groundwater levels using universal kriging—A case study. Hydrological Sciences Journal, 52, 1038–1050.CrossRefGoogle Scholar
  36. Kumar, D. (2013). Rice cultivation in Haryana: a spatio-temporal study. Unpublished M.Phil. Dissertation submitted to Department of Geography, Kurukshetra University, Kurukshetra, India (pp. 74–77).Google Scholar
  37. Llamas, M. R., & Santos, P. M. (2005). Intensive groundwater use: Silent revolution and potential source of social conflicts. Journal of Water Resource Planning and Management, 131, 337–341.CrossRefGoogle Scholar
  38. Machiwal, D., & Jha, M. K. (2014). Characterizing rainfall-groundwater dynamics in a hard-rock aquifer system using time series, GIS and geostatistical modeling. Hydrological Processes, 28, 2824–2843.CrossRefGoogle Scholar
  39. Mardikis, M. G., Kalivas, D. P., & Kollias, V. J. (2005). Comparison of interpolation methods for the prediction of reference evapotranspiration: An application in Greece. Water Resources Management, 19, 251–278.CrossRefGoogle Scholar
  40. Moreaux, M., & Reynaud, A. (2006). Urban freshwater needs and spatial cost externalities for coastal aquifers: A theoretical approach. Regional Science and Urban Economics, 36, 163–186.CrossRefGoogle Scholar
  41. Mukherjee, A., Saha, D., Harvey, C. F., Taylor, R. G., Ahmed, K. M., & Bhanja, S. N. (2015). Groundwater systems of the Indian Sub-Continent. Journal of Hydrology: Regional Studies, 4, 1–14.Google Scholar
  42. Nalder, I. A., & Wein, R. W. (1998). Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 92, 211–225.CrossRefGoogle Scholar
  43. Ndlovu, M. S., & Demlie, M. (2018). Statistical analysis of groundwater level variability across KwaZulu-Natal Province, South Africa. Environmental Earth Sciences, 77, 739.CrossRefGoogle Scholar
  44. Neto, R. T. B., Santos, C. A. G., Mulligan, K., & Barbato, L. (2016). Spatial and temporal water-level variations in the Texas portion of the Ogallala aquifer. Natural Hazards, 80, 351–365.CrossRefGoogle Scholar
  45. Panda, D. K., Mishra, A., Jena, S. K., James, B. K., & Kumar, A. (2007). The influence of drought and anthropogenic effects on groundwater levels in Orissa, India. Journal of Hydrology, 343, 140–153.CrossRefGoogle Scholar
  46. Panda, D. K., Mishra, A., & Kumar, A. (2012). Quantification of trends in groundwater levels of Gujarat in western India. Hydrological Sciences Journal, 57, 1325–1336.CrossRefGoogle Scholar
  47. Pandey, A. C., Hooda, R. S., Nathawat, M. S., & Rao, T. B. V. M. (2004). Resource Atlas of Haryana. Chandigarh: Haryana State Council for Science and Technology.Google Scholar
  48. Park, Y. C., Jo, Y. J., & Lee, J. Y. (2011). Trends of groundwater data from the Korean National groundwater monitoring stations: Indication of any change. Geosciences Journal, 15, 105–114.CrossRefGoogle Scholar
  49. Pathak, B. D. (1978). Exploration and exploitation of groundwater with special reference to recharge. The National Geographical Journal of India, 24, 49–54.Google Scholar
  50. Pathak, A. A., & Dodamani, B. M. (2018). Trend analysis of groundwater levels and assessment of regional groundwater drought: Ghataprabha River Basin, India. Natural Resources Research.  https://doi.org/10.1007/s11053-018-9417-0.Google Scholar
  51. Patle, G. T., Singh, D. K., & Sarangi, A. (2016). Modelling of declining groundwater depth in Kurukshetra district, Haryana, India. Current Science, 111, 717–723.CrossRefGoogle Scholar
  52. Patle, G. T., Singh, D. K., Sarangi, A., Rai, A., Khanna, A., & Sahoo, N. (2015). Time-series analysis of groundwater levels and projection of future trend. Journal of the Geological Society of India, 85, 232–242.CrossRefGoogle Scholar
  53. Pettitt, A. N. (1979). A non parametric approach to the change point problem. Journal of Applied Statistics, 28, 126–135.CrossRefGoogle Scholar
  54. Qureshi, A. S., McCornick, P. G., Sarwar, A., & Sharma, B. R. (2010). Challenges and prospects of sustainable groundwater management in the Indus basin, Pakistan. Water Resources Management, 24, 1551–1569.CrossRefGoogle Scholar
  55. Rahman, A. T. M. S., Kamruzzaman, M., Jahan, C. S., Mazumder, Q. H., & Hossain, A. (2016). Evaluation of spatiotemporal dynamics of water table in NW Bangladesh: An integrated approach of GIS and Statistics. Sustainable Water Resources Management, 2, 297–312.CrossRefGoogle Scholar
  56. Reddy, A. G. S. (2012). Water level variations in fractured semi-confined aquifers of Anantapur District, Southern India. Journal of the Geological Society of India, 80, 111–118.CrossRefGoogle Scholar
  57. Reeves, J., Chen, J., Wang, X. L., Lund, R., & Lu, Q. (2007). A review and comparison of change-point detection techniques for climate data. Journal of Applied Meteorology and Climatology, 46, 900–915.CrossRefGoogle Scholar
  58. Ribeiro, L., Kretschmer, N., Nascimento, J., Buxo, A., Rotting, T., Soto, G., et al. (2015). Evaluating piezometric trends using the Mann–Kendall test on the alluvial aquifers of the Elqui River Basin, Chile. Hydrological Sciences Journal, 60, 1840–1852.CrossRefGoogle Scholar
  59. Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002.CrossRefGoogle Scholar
  60. Rupa Kumar, K., Sahai, A. K., Kumar, K. K., Patwardhan, S. K., Mishra, P. K., Revadekar, J. V., et al. (2006). High-resolution climate change scenarios for India for the 21st century. Current Science, 90, 334–345.Google Scholar
  61. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association, 63, 1379–1389.CrossRefGoogle Scholar
  62. Shah, T., Roy, A. D., Qureshi, A. S., & Wang, J. (2003). Sustaining Asia’s groundwater boom: An overview of issues and evidence. Natural Resources Forum, 27, 130–141.CrossRefGoogle Scholar
  63. Shamsudduha, M., Chandler, R. E., & Taylor, R. G. (2009). Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges–Brahmaputra–Meghna Delta. Hydrology and Earth System Science, 13, 2373–2385.CrossRefGoogle Scholar
  64. Singh, O., & Amrita, (2015). Groundwater variability in Haryana: a spatio-temporal analysis. Punjab Geographer, 11, 13–36.Google Scholar
  65. Singh, O., & Kasana, A. (2017). GIS-based spatial and temporal investigation of groundwater level fluctuations under rice-wheat ecosystem over Haryana. Journal of the Geological Society of India, 89, 554–562.CrossRefGoogle Scholar
  66. Singh, C. K., & Katpatal, Y. B. (2018). Spatial and temporal variation of groundwater levels: A case study of Wainganga sub-basin, Nagpur, India. In V. P. Singh, et al. (Eds.), Groundwater, water science and technology (pp. 21–30). Singapore: Springer Nature Private Limited.Google Scholar
  67. Singh, A., Kruse, P., Panda, S. N., & Flugel, W. A. (2010). Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India. Agricultural Water Management, 97, 1443–1451.CrossRefGoogle Scholar
  68. Singh, A., Sharma, C. S., Jeyaseelan, A. T., & Chowdary, V. M. (2015). Spatiotemporal analysis of groundwater resources in Jalandhar district of Punjab state, India. Sustainable Water Resources Management, 1, 293–304.CrossRefGoogle Scholar
  69. Steward, D. R., & Allen, A. J. (2016). Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110. Agricultural Water Management, 170, 36–48.CrossRefGoogle Scholar
  70. Sun, Y., Kang, S. Z., Li, F. S., & Zhang, L. (2009). Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China. Environmental Modelling and Software, 24, 1163–1170.CrossRefGoogle Scholar
  71. Tabari, H., Nikbakhat, J., & Some’e, B. S. (2012). Investigation of groundwater level fluctuations in the north of Iran. Environmental Earth Sciences, 66, 231–243.CrossRefGoogle Scholar
  72. Thakur, G. S., & Thomas, T. (2011). Analysis of groundwater levels for detection of trend in Sagar district, Madhya Pradesh. Journal of the Geological Society of India, 77, 303–308.CrossRefGoogle Scholar
  73. Thussu, J. L. (2006). Geology of Haryana and Delhi. Bangalore: Geological Society of India.Google Scholar
  74. Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36, L18401.CrossRefGoogle Scholar
  75. Vousoughi, F. D., Dinpashoh, Y., Aulami, M. T., & Jhajharia, D. (2013). Trend analysis of groundwater using non parametric methods (Case study: Ardabil Plain). Stochastic Environmental Research and Risk Assessment, 27, 547–559.CrossRefGoogle Scholar
  76. Whittemore, D. O., Butler, J. J. J., & Blake, W. (2016). Assessing the major drivers of water-level declines: New insights into the future of heavily stressed aquifers. Hydrological Sciences Journal, 61, 134–145.CrossRefGoogle Scholar
  77. Whitten, E. H. T., & Koelling, M. E. V. (1973). Spline-surface interpolation, spatial filtering, and trend surfaces for geological mapped variables. Mathematical Geology, 5, 111–126.CrossRefGoogle Scholar
  78. Winingaard, J. B., Kleink Tank, A. M. G., & Konnen, G. P. (2003). Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology, 23, 679–692.CrossRefGoogle Scholar
  79. Yadav, M. (2017). Wheat cultivation in Haryana: a spatiotemporal study. Unpublished M.Phil. Dissertation submitted to Department of Geography, Kurukshetra University, Kurukshetra, India (pp. 28–34).Google Scholar
  80. Yang, G. G., Zhang, J., Yang, Y. Z., & You, Z. (2011). Comparison of interpolation methods for typical meteorological factors based on GIS-A case study in Ji Tai basin, China 2011. In Proceedings of the 19th international conference on geoinformatics (pp. 1–5).Google Scholar
  81. Yao, L., Huo, Z., Feng, S., Mao, X., Kang, S., Chen, J., et al. (2014a). Evaluation of spatial interpolation methods for groundwater level in an arid inland oasis, northeast China. Environmental Earth Sciences, 71, 1911–1924.CrossRefGoogle Scholar
  82. Yao, Y. Y., Zheng, C. M., Tian, Y., Liu, J., & Zheng, Y. (2014b). Numerical modelling of regional groundwater flow in Heihe river basin, China: Advances and new insights. Science China Earth Science, 58, 1–13.Google Scholar
  83. Zektser, S., Loaiciga, H. A., & Wolf, J. T. (2005). Environmental impacts of groundwater overdraft: Selected case studies in the south western United States. Environmental Geology, 47, 396–404.CrossRefGoogle Scholar
  84. Zhang, S., Lu, X. X., Higgitt, D. L., Chen, C. T. A., Han, J., & Sun, H. (2008). Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global and Planetary Change, 60, 365–380.CrossRefGoogle Scholar
  85. Zhou, Y., Dong, D., Liu, J., & Li, W. (2013). Upgrading a regional groundwater level monitoring network for Beijing Plain, China. Geoscience Frontiers, 4, 127–138.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  • Omvir Singh
    • 1
    Email author
  • Amrita Kasana
    • 1
  • Krishan Pal Singh
    • 2
  • Arjamadutta Sarangi
    • 3
  1. 1.Department of GeographyKurukshetra UniversityKurukshetraIndia
  2. 2.ICAR-Indian Council of Agricultural researchNew DelhiIndia
  3. 3.Water Technology CentreICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations