Advertisement

Categorization of Mineral Resources Based on Different Geostatistical Simulation Algorithms: A Case Study from an Iron Ore Deposit

  • Nurassyl Battalgazy
  • Nasser MadaniEmail author
Original Paper
  • 18 Downloads

Abstract

Mineral resource classification plays an important role in the downstream activities of a mining project. Spatial modeling of the grade variability in a deposit directly impacts the evaluation of recovery functions, such as the tonnage, metal quantity and mean grade above cutoffs. The use of geostatistical simulations for this purpose is becoming popular among practitioners because they produce statistical parameters of the sample dataset in cases of global distribution (e.g., histograms) and local distribution (e.g., variograms). Conditional simulations can also be assessed to quantify the uncertainty within the blocks. In this sense, mineral resource classification based on obtained realizations leads to the likely computation of reliable recovery functions, showing the worst and best scenarios. However, applying the proper geostatistical (co)-simulation algorithms is critical in the case of modeling variables with strong cross-correlation structures. In this context, enhanced approaches such as projection pursuit multivariate transforms (PPMTs) are highly desirable. In this paper, the mineral resources in an iron ore deposit are computed and categorized employing the PPMT method, and then, the outputs are compared with conventional (co)-simulation methods for the reproduction of statistical parameters and for the calculation of tonnage at different levels of cutoff grades. The results show that the PPMT outperforms conventional (co)-simulation approaches not only in terms of local and global cross-correlation reproductions between two underlying grades (Fe and Al2O3) in this iron deposit but also in terms of mineral resource categories according to the Joint Ore Reserves Committee standard.

Keywords

Mineral resource classification Projection pursuit multivariate transform Joint simulation Iron deposit JORC code 

Notes

Acknowledgments

The authors are grateful to Nazarbayev University for funding this work via “Faculty Development Competitive Research Grants for 2018–2020 under Contract No. 090118FD5336.” The second author acknowledges the Social Policy Grant (SPG) supported by Nazarbayev University. The authors also thank the Geovariances Company for providing the dataset. We are also grateful to Dr. John Carranza and the reviewers for their valuable comments, which substantially helped improving the final version of the manuscript.

References

  1. Abildin, Y., Madani, N., & Topal, E. (2019). A hybrid approach for joint simulation of geometallurgical variables with inequality constraint. Minerals, 9(1), 24.CrossRefGoogle Scholar
  2. Adeli, A., Emery, X., & Dowd, P. (2017). Geological modelling and validation of geological interpretations via simulation and classification of quantitative covariates. Minerals, 8(1), 7.CrossRefGoogle Scholar
  3. Arik, A. (1999). An alternative approach to ore reserve classification. In APCOM proceedings of the 1999 computer applications in the mineral industries (APCOM) symposium (pp. 45–53).Google Scholar
  4. Arik, A. (2002). Comparison of resource classification methodologies with a new approach. In APCOM proceedings of the 2002 application of computers and operations research in the mineral industry (APCOM) symposium (pp 57–64).Google Scholar
  5. Barnett, R., Manchuk, J., & Deutsch, C. (2014). Projection pursuit multivariate transform. Mathematical Geosciences, 46(3), 337–359.CrossRefGoogle Scholar
  6. Barnett, R. M. (2017). Projection pursuit multivariate transform. In J. L. Deutsch (Ed.), Geostatistics lessons. http://www.geostatisticslessons.com/lessons/lineardecorrelation.html. Accessed 24 Oct 2018.
  7. Barnett, R. M., Manchuk, J. G., & Deutsch, C. V. (2016). The projection pursuit multivariate transform for improved continuous variable modeling. Society of Petroleum Engineers.  https://doi.org/10.2118/184388-pa.Google Scholar
  8. Beisiegel, V. D. R., Bernardelli, A. L., Drummond, N. F., Ruff, A. W., & Tremaine, J. W. (1973). Geologia e recursos minerais da Serra dos Carajás. Brazilian Journal of Geology, 3(4), 215–242.Google Scholar
  9. Boisvert, J. B., Rossi, M. E., Ehrig, K., & Deutsch, C. V. (2013). Geometallurgical modeling at Olympic dam mine, South Australia. Mathematical Geosciences, 45(8), 1–25.CrossRefGoogle Scholar
  10. Carr, J. R., & Myers, D. E. (1985). COSIM: A FORTRAN IV program for coconditional simulation. Computers & Geosciences, 11(6), 675–705.CrossRefGoogle Scholar
  11. Chilès, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  12. Code, J. O. R. C., & Joint Ore Reserves Committee. (2012). The JORC code and guidelines. Australasian code for reporting of exploration results, mineral resources and ore reserves prepared by The Australasian Institute of Mining and Metallurgy (AusIMM), Australian Institute of Geoscientists and Minerals Council of Australia. [Online] Dostępne w: www.jorc.org [Dostęp: 10.07. 2015].
  13. David, M. (1977). Geostatistical ore reserve estimation. New York: Elsevier Science Publishing Co.Google Scholar
  14. Deutsch, C. (1989). DECLUS: A FORTRAN 77 program for determining optimum spatial declustering weights. Computers & Geosciences, 15(3), 325–332.CrossRefGoogle Scholar
  15. Deutsch, C. V. (2013). Geostatistical modelling of geometallurgical variables: Problems and solutions. In S. Dominay (Eds.), Proceeding of the second AusIMM international geometallurgy conference (Geomet 2013). Brisbane, Australia.Google Scholar
  16. Deutsch, C. V., & Journel, A. G. (1998). Geostatistical software library and user’s guide. New York: Oxford University Press.Google Scholar
  17. Deutsch, C. V., Leuangthong, O., & Ortiz J. (2006). A case for geometric criteria in resources and reserves classification. Centre for Computational Geostatistics, report 7, University of Alberta, EdmontonGoogle Scholar
  18. Dimitrakopoulos, R., Godoy, M., & Chou, C. (2009). Resource/reserve classification with integrated geometric and local grade variability measures. In Proceedings orebody modelling and strategic mine planning (pp. 207–214). The Australasian Institute of Mining and Metallurgy, Melbourne.Google Scholar
  19. Dohm, C. (2005). Quantifiable mineral resource classification: A logical approach. In O. Leuanthong & C. V. Deutsch (Eds.), Geostatistics Banff 2004 (Vol. 1, pp. 333–342). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  20. Dominy, S. C., Noppé, M. A., & Annels, A. E. (2002). Errors and uncertainty in mineral resource and ore reserve estimation: The importance of getting it right. Exploration and Mining Geology, 11(1–4), 77–98.CrossRefGoogle Scholar
  21. Duggan, S., & Dimitrakopoulos, R. (2005). Application of conditional simulation to quantify uncertainty and to classify a diamond deflation deposit. In O. Leuangthong & C. Deutsch (Eds.), Geostatistics Banff 2004 (Vol. 2, pp. 419–428). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  22. Emery, X. (2005). Simple and ordinary multigaussian kriging for estimating recoverable reserves. Mathematical Geology, 37(3), 295–319.CrossRefGoogle Scholar
  23. Emery, X. (2007). Conditioning simulations of Gaussian random fields by ordinary kriging. Mathematical Geology, 39(6), 607–623.CrossRefGoogle Scholar
  24. Emery, X. (2008). A turning bands program for conditional co-simulation of cross-correlated Gaussian random fields. Computers & Geosciences, 34(12), 1850–1862.CrossRefGoogle Scholar
  25. Emery, X., & Lantuéjoul, C. (2006). Tbsim: A computer program for conditional simulation of three-dimensional gaussian random fields via the turning bands method. Computers & Geosciences, 32(10), 1615–1628.CrossRefGoogle Scholar
  26. Emery, X., Ortiz, J. M., & Rodríguez, J. J. (2006). Quantifying uncertainty in mineral resources by use of classification schemes and conditional simulations. Mathematical Geology, 38(4), 445–464.CrossRefGoogle Scholar
  27. Eze, P. N., Madani, N., & Adoko, A. C. (2019). Multivariate mapping of heavy metals spatial contamination in a Cu–Ni exploration field (Botswana) using turning bands co-simulation algorithm. Natural Resources Researches, 28(1), 109–124.  https://doi.org/10.1007/s11053-018-9378-3.CrossRefGoogle Scholar
  28. Fox, K. A. (2017). The usefulness of NI 43-101 technical reports for financial analysts. Research Policy, 51, 225–233.CrossRefGoogle Scholar
  29. Friedman, J. H. (1987). Exploratory projection pursuit. Journal of American Statistical Association, 82, 249–266.CrossRefGoogle Scholar
  30. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.Google Scholar
  31. Gutjahr, A., Bullard, B., & Hatch, S. (1997). General joint conditional simulations using a fast Fourier transform method. Mathematical Geology, 29(3), 361–389.CrossRefGoogle Scholar
  32. Holdsworth, R. E., & Pinheiro, R. V. (2000). The anatomy of shallow-crustal transpressional structures: Insights from the Archaean Carajás fault zone, Amazon, Brazil. Journal of Structural Geology, 22(8), 1105–1123.CrossRefGoogle Scholar
  33. Hosseini, S. A., & Asghari, O. (2018). Multivariate geostatistical simulation on block-support in the presence of complex multivariate relationships: Iron ore deposit case study. Natural Resources Researches.  https://doi.org/10.1007/s11053-018-9379-2.Google Scholar
  34. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. London: Academic Press.Google Scholar
  35. Krige, D. G. (1996). A practical analysis of the effects of spatial structure and of data available and accessed, on conditional biases in ordinary kriging. Geostatistics Wollongong, 96, 799–810.Google Scholar
  36. Krige, D. G. (1999). Conditional bias and uncertainty of estimation in geostatistics. In Keynote address for APCOM, 99.Google Scholar
  37. Krzemień, A., Fernández, P. R., Sánchez, A. S., & Álvarez, I. D. (2016). Beyond the pan-european standard for reporting of exploration results, mineral resources and reserves. Resources Policy, 49, 81–91.CrossRefGoogle Scholar
  38. Lantuéjoul, C. (1994). Non conditional simulation of stationary isotropic multigaussian random functions. In M. Armstrong & P. A. Dowd (Eds.), Geostatistical simulations (pp. 147–177). Dordrecht: Springer.CrossRefGoogle Scholar
  39. Lantuéjoul, C. (2002). Geostatistical simulation, models and algorithms (p. 256). Berlin: Springer.CrossRefGoogle Scholar
  40. Leuangthong, O., & Deutsch, C. V. (2003). Stepwise conditional transformation for simulation of multiple variables. Mathematical Geology, 35(2), 155–173.CrossRefGoogle Scholar
  41. Madani, N., & Emery, X. (2019). A comparison of search strategies to design the cokriging neighborhood for predicting coregionalized variables. Stochastic Environmental Research and Risk Assessment, 33(1), 183–199.  https://doi.org/10.1007/s00477-018-1578-1.CrossRefGoogle Scholar
  42. Madani, N., & Ortiz, J. (2017). Geostatistical simulation of cross-correlated variables: A case study through Cerro Matoso Nickel-Laterite deposit. In The 26th international symposium on mine planning and equipment selection. Nazarbayev University School of Mining and Geosciences.Google Scholar
  43. Maleki, M., & Madani, N. (2017). Multivariate geostatistical analysis: An application to ore body evaluation. Iranian Journal of Earth Sciences, 8, 173–184.Google Scholar
  44. Manchuk, J., Leuangthong, O., & Deutsch, C. (2009). The proportional effect. Mathematical Geosciences, 41(7), 799–816.CrossRefGoogle Scholar
  45. Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5(3), 439–468.CrossRefGoogle Scholar
  46. Meirelles, E. M., Hirata, W. K., Amaral, A. D., Medeiros Filho, C. A., & Gato, W. D. C. (1984). Geologia das folhas Carajás e Rio Verde, Província Mineral de Carajás, Estado do Pará. In Congresso Brasileiro de Geologia, no. 33, Rio de Janeiro, Annals (Vol. 5, pp. 2164–2174).Google Scholar
  47. Menin, R., Diedrich, C., Reuwsaat, J. D., & De Paula, W. F. (2017). Drilling grid analysis for defining open-pit and underground mineral resource classification through production data. In J. Gómez-Hernández, J. Rodrigo-Ilarri, M. Rodrigo-Clavero, E. Cassiraga, & J. Vargas-Guzmán (Eds.), Geostatistics valencia (2016). Quantitative geology and geostatistics (Vol. 19). Cham: Springer.Google Scholar
  48. Murphy, M., Parker, H., Ross, A., & Audet, M. (2004). Ore-thickness and nickel grade resource confidence at the Koniambo nickel laterite deposit in New Caledonia: A conditional simulation voyage of discovery. In O. Leuangthong & C. Deutsch (Eds.), Geostatistics Banff 2004. Dordrecht: Springer.Google Scholar
  49. Mwasinga, P. (2001). Approaching resource classification: General practices and the integration of geostatistics. In Proceedings of the 2001 international symposium on computer applications in the mineral industries (APCOM) (pp. 97–104).Google Scholar
  50. Myers, D. E. (1989). Vector conditional simulation. In M. Armstrong (Ed.), Geostatistics (pp. 283–293). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  51. Naus, T. (2008). Unbiased LiDAR data measurement (draft). Retrieved September 20, 2018 from http://www.asprs.org/a/society/committees/lidar/Unbiased_measurement.pdf.
  52. Paradella, W. R., Ferretti, A., Mura, J. C., Colombo, D., Gama, F. F., Tamburini, A., et al. (2015). Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Engineering Geology, 193, 61–78.CrossRefGoogle Scholar
  53. Paravarzar, S., Emery, X., & Madani, N. (2015). Comparing sequential Gaussian simulation and turning bands algorithms for cosimulating grades in multi-element deposits. Comptes Rendus Geoscience, 347(2), 84–93.CrossRefGoogle Scholar
  54. Reed, M., & Simon, B. (1972). Methods of modern mathematical physics: Functional analysis. Resources Policy, 49(2016), 81–91.Google Scholar
  55. Rivoirard, J. (1994). Introduction to disjunctive kriging and non-linear geostatistics. Oxford: Clarendon Press.Google Scholar
  56. Rivoirard, J., & Renard, D. (2016). A specific volume to measure the spatial sampling of deposits. Mathematical Geosciences, 48(7), 791–809.CrossRefGoogle Scholar
  57. Rossi, M. E. (2003). Practical aspects of large-scale conditional simulations. In Proceedings of the 31st international symposium on applications of computers and operations research in the mineral industries (APCOM), Cape Town (pp. 14–16).Google Scholar
  58. Rossi, M. E., & Deutsch, C. V. (2014). Mineral resource estimation. Berlin: Springer.CrossRefGoogle Scholar
  59. Sadeghi, B., Madani, N., & Carranza, E. J. M. (2015). Combination of geostatistical simulation and fractal modeling for mineral resource classification. Journal of Geochemical Exploration, 149, 59–73.CrossRefGoogle Scholar
  60. Silva, D., & Boisvert, J. (2014). Mineral resource classification: A comparison of new and existing techniques. Journal of the Southern African Institute of Mining and Metallurgy, 114, 265–273.Google Scholar
  61. Sinclair, A. J., & Blackwell, G. H. (2002). Applied mineral inventory estimation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  62. Snowden, D. V. (2001). Practical interpretation of mineral resource and ore reserve classification guidelines. In A. C. Edwards (Ed.), Mineral resource and ore reserve estimation—The AusIMM guide to good practice: The Australasian Institute of Mining and Metallurgy, Monograph 23, Melbourne (p. 643–652).Google Scholar
  63. Vallée, M. (1999). Resource/reserve inventories: What are the objectives? CIM Bulletin, 92(1031), 151–155.Google Scholar
  64. Vallée, M. (2000). Mineral resource + engineering, economic and legal feasibility = ore reserve. CIM Bulletin, 93(1039), 53–61.Google Scholar
  65. Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications (p. 387). Berlin: Springer.CrossRefGoogle Scholar
  66. Wackernagel, H. (2013). Multivariate geostatistics: An introduction with applications. Berlin: Springer.Google Scholar
  67. Wawruch, T. M., & Betzhold, J. F. (2005). Mineral resource classification through conditional simulation. In Geostatistics Banff 2004 (pp. 479–489). SpringerGoogle Scholar
  68. Wilde, B. (2010). Programs for data spacing, uncertainty, and classification. CCG annual report 12, paper 403.Google Scholar
  69. Yamamoto, J. K. (2000). An alternative measure of the reliability of ordinary kriging estimates. Mathematical Geology, 32(4), 489–509.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  1. 1.School of Mining and GeosciencesNazarbayev UniversityAstanaKazakhstan

Personalised recommendations