Advertisement

Novel Hybrid Integration Approach of Bagging-Based Fisher’s Linear Discriminant Function for Groundwater Potential Analysis

  • Wei Chen
  • Biswajeet PradhanEmail author
  • Shaojun Li
  • Himan Shahabi
  • Hossein Mojaddadi Rizeei
  • Enke Hou
  • Shengquan Wang
Original Paper
  • 43 Downloads

Abstract

Groundwater is a vital water source in the rural and urban areas of developing and developed nations. In this study, a novel hybrid integration approach of Fisher’s linear discriminant function (FLDA) with rotation forest (RFLDA) and bagging (BFLDA) ensembles was used for groundwater potential assessment at the Ningtiaota area in Shaanxi, China. A spatial database with 66 groundwater spring locations and 14 groundwater spring contributing factors was prepared; these factors were elevation, aspect, slope, plan and profile curvatures, sediment transport index, stream power index, topographic wetness index, distance to roads and streams, land use, lithology, soil and normalized difference vegetation index. The classifier attribute evaluation method based on the FLDA model was implemented to test the predictive competence of the mentioned contributing factors. The area under curve, confidence interval at 95%, standard error, Friedman test and Wilcoxon signed-rank test were used to compare and validate the success and prediction competence of the three applied models. According to the achieved results, the BFLDA model showed the most prediction competence, followed by the RFLDA and FLDA models, respectively. The resulting groundwater spring potential maps can be used for groundwater development plans and land use planning.

Keywords

Groundwater Machine learning Fisher’s linear discriminant function (FLDA) Rotation forest (RTF) GIS 

Notes

Acknowledgments

This research was financially supported by the International Partnership Program of the Chinese Academy of Sciences (Grant No. 115242KYSB20170022), the National Natural Science Foundation of China (Grant Nos. 41807192, 41472234), the China Postdoctoral Science Foundation (Grant No. 2018T111084, 2017M613168), the Shanxi Province Postdoctoral Science Foundation (Grant No. 2017BSHYDZZ07), the Open Fund of Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Grant No. DMSM2017029), and the Open Fund of the Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources (Grant No. ZZ2016-1).

References

  1. Agarwal, D., & Chen, B. C. fLDA: Matrix factorization through latent Dirichlet allocation. In International conference on web search and web data mining, WSDM 2010, New York, NY, USA, February, 2010 (pp. 91–100)Google Scholar
  2. Agarwal, R., & Garg, P. (2016). Remote sensing and GIS based groundwater potential and recharge zones mapping using multi-criteria decision making technique. Water Resources Management, 30(1), 243–260.Google Scholar
  3. Aguilera, P. A., Fernández, A., Ropero, R. F., & Molina, L. (2013). Groundwater quality assessment using data clustering based on hybrid Bayesian networks. Stochastic Environmental Research and Risk Assessment, 27(2), 435–447.Google Scholar
  4. Al-Abadi, A. M. (2015). Groundwater potential mapping at northeastern Wasit and Missan governorates, Iraq using a data-driven weights of evidence technique in framework of GIS. Environmental Earth Sciences, 74(2), 1109–1124.  https://doi.org/10.1007/s12665-015-4097-0.Google Scholar
  5. Alkhasawneh, M. S., Ngah, U. K., Tay, L. T., Mat Isa, N. A., & Al-Batah, M. S. (2014). Modeling and testing landslide hazard using decision tree. Journal of Applied Mathematics, 2014(1), 568–575.Google Scholar
  6. Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014). A novel ensemble decision tree-based CHi squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides, 11(6), 1063–1078.Google Scholar
  7. Arkoprovo, B., Adarsa, J., & Prakash, S. S. (2012). Delineation of groundwater potential zones using satellite remote sensing and geographic information system techniques: A case study from Ganjam district, Orissa, India. Research Journal of Recent Sciences, 2277, 2502.Google Scholar
  8. Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1–2), 105–139.Google Scholar
  9. Bera, K., & Bandyopadhyay, J. (2012). Ground water potential mapping in Dulung watershed using remote sensing and GIS techniques, West Bengal, India. International Journal of Scientific and Research Publications, 2(12), 1–7.Google Scholar
  10. Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123–140.Google Scholar
  11. Breiman, L. (1996b). Out-of-bag estimation. Retrieved August 20, 2018 from https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf.
  12. Chen, W., Li, H., Hou, E., Wang, S., Wang, G., Panahi, M., et al. (2018a). GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Science of the Total Environment, 634, 853–867.Google Scholar
  13. Chen, W., Peng, J., Hong, H., Shahabi, H., Pradhan, B., Liu, J., et al. (2018b). Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626, 1121–1135.  https://doi.org/10.1016/j.scitotenv.2018.01.124.Google Scholar
  14. Chen, W., Shahabi, H., Shirzadi, A., Li, T., Guo, C., Hong, H., et al. (2018c). A novel ensemble approach of bivariate statistical based logistic model tree classifier for landslide susceptibility assessment. Geocarto International, 1, 1–32.  https://doi.org/10.1080/10106049.2018.1425738.Google Scholar
  15. Chen, W., Shirzadi, A., Shahabi, H., Ahmad, B. B., Zhang, S., Hong, H., et al. (2017a). A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatics, Natural Hazards and Risk, 8(2), 1955–1977.  https://doi.org/10.1080/19475705.2017.1401560.Google Scholar
  16. Chen, W., Xie, X., Peng, J., Shahabi, H., Hong, H., Tien Bui, D., et al. (2018d). GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena, 164, 135–149.Google Scholar
  17. Chen, W., Xie, X., Peng, J., Wang, J., Duan, Z., & Hong, H. (2017b). GIS-based landslide susceptibility modelling: A comparative assessment of kernel logistic regression, Naïve–Bayes tree, and alternating decision tree models. Geomatics, Natural Hazards and Risk, 8(2), 950–973.  https://doi.org/10.1080/19475705.2017.1289250.Google Scholar
  18. Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Tien Bui, D., et al. (2017c). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 151, 147–160.Google Scholar
  19. Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater spring mapping: An application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111(1–2), 79–87.Google Scholar
  20. Cui, Y., & Shao, J. (2005). The role of ground water in arid/semiarid ecosystems. Northwest China. Groundwater, 43(4), 471–477.Google Scholar
  21. Dixon, B. (2005). Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: A GIS-based sensitivity analysis. Journal of Hydrology, 309(1), 17–38.Google Scholar
  22. Duan, H., Deng, Z., Deng, F., & Wang, D. (2016). Assessment of groundwater potential based on multicriteria decision making model and decision tree algorithms. Mathematical Problems in Engineering, 2016, 2064575.  https://doi.org/10.1155/2016/2064575.Google Scholar
  23. Elbeih, S. F. (2015). An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Engineering Journal, 6(1), 1–15.Google Scholar
  24. Falah, F., Ghorbani Nejad, S., Rahmati, O., Daneshfar, M., & Zeinivand, H. (2017). Applicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods. Geocarto International, 32(10), 1069–1089.Google Scholar
  25. Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Publications of the American Statistical Association, 32(200), 675–701.Google Scholar
  26. Friedman, M. (1939). A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Publications of the American Statistical Association, 34(205), 109.Google Scholar
  27. Gemitzi, A., Petalas, C., Tsihrintzis, V. A., & Pisinaras, V. (2006). Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques. Environmental Geology, 49(5), 653–673.Google Scholar
  28. Ghorbani Nejad, S., Falah, F., Daneshfar, M., Haghizadeh, A., & Rahmati, O. (2017). Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto International, 32(2), 167–187.Google Scholar
  29. Gilbert, E. S. (1969). The effect of unequal variance-covariance matrices on Fisher’s linear discriminant function. Biometrics, 25, 505–515.Google Scholar
  30. Golkarian, A., Naghibi, S. A., Kalantar, B., & Pradhan, B. (2018). Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS. Environmental Monitoring and Assessment, 190(3), 149.Google Scholar
  31. Gupta, M., & Srivastava, P. K. (2010). Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water International, 35(2), 233–245.Google Scholar
  32. Hong, H., Liu, J., Bui, D. T., Pradhan, B., Acharya, T. D., Pham, B. T., et al. (2018a). Landslide susceptibility mapping using J48 decision tree with AdaBoost, bagging and rotation forest ensembles in the Guangchang area (China). Catena, 163, 399–413.  https://doi.org/10.1016/j.catena.2018.01.005.Google Scholar
  33. Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A. X., et al. (2018b). Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of the Total Environment, 621, 1124–1141.  https://doi.org/10.1016/j.scitotenv.2017.10.114.Google Scholar
  34. Hothorn, T., & Lausen, B. (2005). Bundling classifiers by bagging trees. Computational Statistics & Data Analysis, 49(4), 1068–1078.Google Scholar
  35. Huang, G.-B. (2014). An insight into extreme learning machines: Random neurons, random features and kernels. Cognitive Computation, 6(3), 376–390.Google Scholar
  36. Israil, M., Al-Hadithi, M., & Singhal, D. (2006). Application of a resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeology Journal, 14(5), 753–759.Google Scholar
  37. Jandric, Z., & Srdjevic, B. (2000). Analytic hierarchy process in selecting best groundwater pond. In 31st International geological congress (pp. 1–9)Google Scholar
  38. Javed, A., & Wani, M. H. (2009). Delineation of groundwater potential zones in Kakund watershed, Eastern Rajasthan, using remote sensing and GIS techniques. Journal of the Geological Society of India, 73(2), 229–236.Google Scholar
  39. Jha, M. K., Bongane, G. M., Chowdary, V. M., Cluckie, I. D., Chen, Y., & Babovic, V., et al. (2009). Groundwater potential zoning by remote sensing, GIS and MCDM techniques: A case study of eastern India. In Symposium JS.4 at the IAHS & IAH convention (pp. 432–441). IAHS Press.Google Scholar
  40. Jiang, P., & Chen, J. (2016). Displacement prediction of landslide based on generalized regression neural networks with K-fold cross-validation. Neurocomputing, 198(198), 40–47.Google Scholar
  41. Jolicoeur, P. (1999). Fisher’s linear discriminant function. In Introduction to biometry (pp. 303–308). Berlin: Springer.  https://doi.org/10.1007/978-1-4615-4777-8_33.
  42. Kaliraj, S., Chandrasekar, N., & Magesh, N. (2014). Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian Journal of Geosciences, 7(4), 1385–1401.Google Scholar
  43. Khosravi, K., Pham, B. T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., et al. (2018). A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 627, 744–755.  https://doi.org/10.1016/j.scitotenv.2018.01.266.Google Scholar
  44. Kordestani, M. D., Naghibi, S. A., Hashemi, H., Ahmadi, K., Kalantar, B., & Pradhan, B. (2018). Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeology Journal.  https://doi.org/10.1007/s10040-018-1848-5.Google Scholar
  45. Kumar, T., Gautam, A. K., & Kumar, T. (2014). Appraising the accuracy of GIS-based multi-criteria decision making technique for delineation of groundwater potential zones. Water Resources Management, 28(13), 4449–4466.Google Scholar
  46. Kumar, A., & Krishna, A. P. (2018). Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto International, 33(2), 105–129.  https://doi.org/10.1080/10106049.2016.1232314.Google Scholar
  47. Kumar, B., & Kumar, U. (2010). Integrated approach using RS and GIS techniques for mapping of ground water prospects in Lower Sanjai Watershed, Jharkhand. International Journal of Geomatics & Geosciences, 1(3), 587–598.Google Scholar
  48. Kumar, U., Kumar, B., & Mallick, N. (2013). Groundwater prospects zonation based on RS and GIS using fuzzy algebra in Khoh river watershed, Pauri-Garhwal District, Uttarakhand, India. Global Perspectives on Geography, 1(3), 37–45.Google Scholar
  49. Kumar, A., Sharma, H. C., & Kumar, S. (2011). Planning for replenishing the depleted groundwater in upper Gangetic plains using RS and GIS. Indian Journal of Soil Conservation, 33(3), 0970–3349.Google Scholar
  50. Kuncheva, L. I., & Rodríguez, J. J. (2007). An experimental study on rotation forest ensembles. In International workshop on multiple classifier systems (pp. 459–468). SpringerGoogle Scholar
  51. Lee, S., Hong, S.-M., & Jung, H.-S. (2018). GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea. Geocarto International, 33(8), 847–861.Google Scholar
  52. Lee, S., Kim, Y.-S., & Oh, H.-J. (2012a). Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. Journal of Environmental Management, 96(1), 91–105.Google Scholar
  53. Lee, S., & Lee, C.-W. (2015). Application of decision-tree model to groundwater productivity-potential mapping. Sustainability, 7(10), 13416–13432.Google Scholar
  54. Lee, S., Song, K.-Y., Kim, Y., & Park, I. (2012b). Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeology Journal, 20(8), 1511–1527.Google Scholar
  55. Lv, F., & Han, M. (2018). Hyperspectral image classification based on improved rotation forest algorithm. Sensors, 18(11), 3601.Google Scholar
  56. Mair, A., & El-Kadi, A. I. (2013). Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA. Journal of Contaminant Hydrology, 153, 1–23.Google Scholar
  57. Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., & Ramli, M. F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences, 7(2), 711–724.Google Scholar
  58. Masetti, M., Poli, S., & Sterlacchini, S. (2007). The use of the weights-of-evidence modeling technique to estimate the vulnerability of groundwater to nitrate contamination. Natural Resources Research, 16(2), 109–119.Google Scholar
  59. Meijerink, A. (1996). Remote sensing applications to hydrology: Groundwater. Hydrological Sciences Journal, 41(4), 549–561.Google Scholar
  60. Mezaal, M., Pradhan, B., & Rizeei, H. (2018). Improving landslide detection from airborne laser scanning data using optimized Dempster–Shafer. Remote Sensing, 10(7), 1029.Google Scholar
  61. Moghaddam, B., Weiss, Y., & Avidan, S. (2007). Spectral method for sparse linear discriminant analysis. US. US 2007/0122041 A1.Google Scholar
  62. Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., & Ghazali, A. H. B. (2017). Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 1080–1102.Google Scholar
  63. Naghibi, S. A., & Dashtpagerdi, M. M. (2017). Evaluation of four supervised learning methods for groundwater spring potential mapping in Khalkhal region (Iran) using GIS-based features. Hydrogeology Journal, 25(1), 169–189.Google Scholar
  64. Naghibi, S. A., Moghaddam, D. D., Kalantar, B., Pradhan, B., & Kisi, O. (2017). A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. Journal of Hydrology, 548, 471–483.Google Scholar
  65. Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 1–27.Google Scholar
  66. Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics, 8(1), 171–186.Google Scholar
  67. Nampak, H., Pradhan, B., & Manap, M. A. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283–300.Google Scholar
  68. Nampak, H., Pradhan, B., Mojaddadi Rizeei, H., & Park, H. J. (2018). Assessment of land cover and land use change impact on soil loss in a tropical catchment by using multitemporal SPOT-5 satellite images and revised universal soil loss equation model. Land Degradation and Development, 29(10), 3440–3455.Google Scholar
  69. Nobre, R., Rotunno Filho, O., Mansur, W., Nobre, M., & Cosenza, C. (2007). Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology, 94(3), 277–292.Google Scholar
  70. Ohlmacher, G. C., & Davis, J. C. (2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69(3–4), 331–343.Google Scholar
  71. Ozcift, A., & Gulten, A. (2011). Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Computer Methods and Programs in Biomedicine, 104(3), 443–451.Google Scholar
  72. Ozdemir, A. (2011a). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology, 411(3–4), 290–308.Google Scholar
  73. Ozdemir, A. (2011b). Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology, 405(1), 123–136.Google Scholar
  74. Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.Google Scholar
  75. Park, I., Kim, Y., & Lee, S. (2014). Groundwater productivity potential mapping using evidential belief function. Groundwater, 52(S1), 201–207.Google Scholar
  76. Pham, B. T., Tien Bui, D., & Prakash, I. (2017). Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: A comparative study. Geotechnical and Geological Engineering, 35(6), 2597–2611.  https://doi.org/10.1007/s10706-017-0264-2.Google Scholar
  77. Pourtaghi, Z. S., & Pourghasemi, H. R. (2014). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22(3), 643–662.Google Scholar
  78. Quinlan, J. R. (1996). Bagging, boosting, and C4. 5. In AAAI/IAAI (Vol. 1, pp. 725–730)Google Scholar
  79. Rahmati, O., & Melesse, A. M. (2016). Application of Dempster–Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran. Science of The Total Environment, 568, 1110–1123.Google Scholar
  80. Rahmati, O., Naghibi, S. A., Shahabi, H., Bui, D. T., Pradhan, B., Azareh, A., et al. (2018). Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches. Journal of Hydrology, 565, 248–261.Google Scholar
  81. Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena, 137, 360–372.Google Scholar
  82. Rahmati, O., Samani, A. N., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071.Google Scholar
  83. Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883.Google Scholar
  84. Razavi Termeh, S. V., Kornejady, A., Pourghasemi, H. R., & Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438–451.  https://doi.org/10.1016/j.scitotenv.2017.09.262.Google Scholar
  85. Rizeei, H. M., Azeez, O. S., Pradhan, B., & Khamees, H. H. (2018a). Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models. Environmental Monitoring and Assessment, 190(11), 633.Google Scholar
  86. Rizeei, H. M., Pradhan, B., & Saharkhiz, M. A. (2018b). An integrated fluvial and flash pluvial model using 2D high-resolution sub-grid and particle swarm optimization-based random forest approaches in GIS. Complex & Intelligent Systems.  https://doi.org/10.1007/s40747-018-0078-8.Google Scholar
  87. Rizeei, H. M., Pradhan, B., & Saharkhiz, M. A. (2018c). Surface runoff prediction regarding LULC and climate dynamics using coupled LTM, optimized ARIMA, and GIS-based SCS-CN models in tropical region. Arabian Journal of Geosciences, 11(3), 53.Google Scholar
  88. Rizeei, H. M., Saharkhiz, M. A., Pradhan, B., & Ahmad, N. (2016). Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International, 31(10), 1158–1177.Google Scholar
  89. Rodriguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1619–1630.Google Scholar
  90. Safavi, H. R., Chakraei, I., Kabiri-Samani, A., & Golmohammadi, M. H. (2013). Optimal reservoir operation based on conjunctive use of surface water and groundwater using neuro-fuzzy systems. Water Resources Management, 27(12), 4259–4275.Google Scholar
  91. Sameen, M. I., Pradhan, B., & Lee, S. (2018). Self-learning random forests model for mapping groundwater yield in data-scarce areas. Natural Resources Research.  https://doi.org/10.1007/s11053-018-9416-1.Google Scholar
  92. Schapire, R. E. (1997) Using output codes to boost multiclass learning problems. In ICML (Vol. 97, pp. 313–321). CiteseerGoogle Scholar
  93. Sener, E., & Davraz, A. (2013). Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal, 21(3), 701–714.Google Scholar
  94. Shahabi, H., Keihanfard, S., Ahmad, B. B., & Amiri, M. J. T. (2014). Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environmental Earth Sciences, 71(9), 4221–4233.Google Scholar
  95. Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2015). Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic Environmental Research and Risk Assessment, 29(4), 1149–1165.Google Scholar
  96. Teso, R. R., Poe, M. P., Younglove, T., & McCool, P. M. (1996). Use of logistic regression and GIS modeling to predict groundwater vulnerability to pesticides. Journal of Environmental Quality, 25(3), 425–432.Google Scholar
  97. Thilagavathi, N., Subramani, T., Suresh, M., & Karunanidhi, D. (2015). Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques. Environmental Monitoring and Assessment, 187(4), 1–17.Google Scholar
  98. Tien Bui, D., Pradhan, B., Nampak, H., Bui, Q.-T., Tran, Q.-A., & Nguyen, Q.-P. (2016a). Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540, 317–330.  https://doi.org/10.1016/j.jhydrol.2016.06.027.Google Scholar
  99. Tien Bui, D., Tuan, T. A., Hoang, N.-D., Thanh, N. Q., Nguyen, D. B., Van Liem, N., et al. (2017). Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides, 14(2), 447–458.  https://doi.org/10.1007/s10346-016-0711-9.Google Scholar
  100. Tien Bui, D., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016b). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378.  https://doi.org/10.1007/s10346-015-0557-6.Google Scholar
  101. Uhan, J., Vižintin, G., & Pezdič, J. (2011). Groundwater nitrate vulnerability assessment in alluvial aquifer using process-based models and weights-of-evidence method: Lower Savinja Valley case study (Slovenia). Environmental Earth Sciences, 64(1), 97–105.Google Scholar
  102. Waikar, M., & Nilawar, A. P. (2014). Identification of groundwater potential zone using remote sensing and GIS technique. International Journal of Innovative Science Engineering and Technology, 3(5), 1264–1274.Google Scholar
  103. Wen, J., Fang, X., Cui, J., Fei, L., Yan, K., Chen, Y., et al. (2018). Robust sparse linear discriminant analysis. IEEE Transactions on Circuits and Systems for Video Technology.  https://doi.org/10.1109/TCSVT.2018.2799214.Google Scholar
  104. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques. Amsterdam: Elsevier Science.Google Scholar
  105. Xia, J., Du, P., He, X., & Chanussot, J. (2014). Hyperspectral remote sensing image classification based on rotation forest. IEEE Geoscience and Remote Sensing Letters, 11(1), 239–243.Google Scholar
  106. Yang, Z. Y., Wang, W. K., Wang, Z., Jiang, G. H., & Li, W. L. (2016). Ecology-oriented groundwater resource assessment in the Tuwei River watershed, Shaanxi Province, China. Hydrogeology Journal, 24(8), 1–14.Google Scholar
  107. Yin, H., Fu, P., & Meng, S. (2006). Sampled FLDA for face recognition with single training image per person. Neurocomputing, 69(16–18), 2443–2445.Google Scholar
  108. Zabihi, M., Pourghasemi, H. R., Pourtaghi, Z. S., & Behzadfar, M. (2016). GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environmental Earth Sciences, 75(8), 1–19.Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  1. 1.College of Geology and EnvironmentXi’an University of Science and TechnologyXi’anChina
  2. 2.Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary MineralsShandong University of Science and TechnologyQingdaoChina
  3. 3.The Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and ITUniversity of Technology SydneySydneyAustralia
  4. 4.Department of Energy and Mineral Resources Engineering, Choongmu-gwanSejong UniversitySeoulRepublic of Korea
  5. 5.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina
  6. 6.Department of Geomorphology, Faculty of Natural ResourcesUniversity of KurdistanSanandajIran
  7. 7.Key Laboratory of Coal Resources Exploration and Comprehensive UtilizationMinistry of Land and ResourcesBeijingChina

Personalised recommendations