Advertisement

Direct Formation of Burkeite in the Geothermal Waters at Vranjska Banja, Serbia

  • Bratislav Ž. TodorovićEmail author
  • Dragan T. Stojiljković
  • Tanja Petrović Pantić
  • Branko Matović
  • Marija Prekajski Djordjević
  • Sanja M. Petrović
  • Milena S. Stojiljković
  • Miloš M. Stevanović
Original Paper
  • 20 Downloads

Abstract

There are no available data about direct burkeite formation on the geothermal waters pipelines in Europe. Data about accompanying minerals of burkeite are also scarce. This mineral has been found in the scale on pipelines of VG-2 and VG-3 boreholes at Vranjska Banja, Serbia. Geothermal waters from these boreholes have temperatures in the range of 103 and 105 °C which classifies them to the warmest waters in the continental Europe. Based on physicochemical and geochemical data, VG-2 and VG-3 geothermal waters can be classified as Na–Alk–SO4Cl type of waters. According to their temperatures, total hardness and pH values, these waters belong to hyperthermal, very soft and moderately alkaline. Calculated LSI (0.4 and 1.7) and RSI (6.5 and 4.8) values indicate their scale formation tendency. Results of the spectrometric scale examination from the pipe deposits provide a clear qualitative and quantitative burkeite characterization with its accompanying minerals. FTIR analysis points to the presence of carbonate (1766, 1458, 877 and 705 cm−1) and sulfate bands (1139, 1116 and 617 cm−1). Apart from the qualitative analysis, XRD also shows the burkeite mass part in the scale. VG-2 geothermal water contains about 50% of burkeite, which is associated with trona mineral (40%) and smaller amount of halite of about 10%. Burkeite is a dominant phase (> 60%) in VG-3 water, with the presence of a significant halite quantity (> 35%) and a minor calcite quantity (2%).

Keywords

Burkeite Geothermal water Scaling Vranjska Banja 

Notes

Acknowledgments

This work was supported by the Ministry of Education and Science of the Republic of Serbia under Projects Nos. TR 33034 and III 45012.

References

  1. Arnórsson, S. (1989). Deposition of calcium carbonate minerals from geothermal waters-theoretical considerations. Geothermics, 18, 33–39.CrossRefGoogle Scholar
  2. Babović, M., Roglić, Č., Avramović, V., & Marić, S. (1977). Explanatory booklet of the basic geological map of the SFR Yugoslavia, sheet Trgovište with Radomir K 34-57 (p. 58). Belgrade: Savezni geološki zavod (in Serbian).Google Scholar
  3. Csaplovics, A. (2014) Die Salzminerale der Salzlacken im Seewinkel, Burgenland (pp. 1–53). Bachelor Thesis, University Vienna.Google Scholar
  4. Driesner, T. (2013). Geothermal activities in the Main Ethiopian Rift: Hydrogeochemical characterization of geothermal waters and geothermometry applications (Dofan-Fantale, Gergede-Sodere, AlutoLangano). Geothermics, 47, 1–12.CrossRefGoogle Scholar
  5. Eugster, H. P., & Hardie, L. A. (1975). Sedimentation in an ancient playa-lake complex: The Wilkins Peak Member of the Green River Formation of Wyoming. Geological Society of America Bulletin, 86, 319–334.CrossRefGoogle Scholar
  6. Garrels, R. M., & Christ, C. L. (1965). Solutions, minerals, and equilibria. New York: Harper and Row.Google Scholar
  7. Giggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochimica et Cosmochimica Acta, 52, 2749–2765.CrossRefGoogle Scholar
  8. Götzinger, M.A. (2009). Die Salzminerale des Seewinkels, Burgenland. In: Autorenkollektiv (Red. M.A. Götzinger P. Huber): Die Mineralien des Burgenlandes/Geologie, Mineralogie und mineralische Rohstoffe. Wissenschaftliche Arbeiten aus dem Burgenland, 126, 72–77.Google Scholar
  9. Harvie, C. E., Møller, N., & Weare, J. (1984). The prediction of mineral solubilities in natural waters: The Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO––H2O system to high ionic strengths at 25°C. Geochimica et Cosmochimica Acta, 48, 723–751.CrossRefGoogle Scholar
  10. Korsakov, A. V., Golovina, A. V., De Gussemb, K., Sharygina, I. S., & Vandenabeele, P. (2009). First finding of burkeite in melt inclusions in olivine from sheared lherzolite xenoliths. Spectrochimica Acta Part A, 73, 424–427.CrossRefGoogle Scholar
  11. Lane, M. D., & Christensen, P. R. (1998). Thermal infrared emission spectroscopy of salts minerals predicted for Mars. Icarus, 135, 528–536.CrossRefGoogle Scholar
  12. Langmuir, D. (1997). Aqueous environmental geochemistry. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  13. Mas, G. R., Bengochea, L., & Mas, L. C. (2007). Burkeite and hanksite at Copahue, Argentina: The first occurrence of sulphate-carbonate minerals in a geothermal field. Mineralogical Magazine, 71, 235–240.CrossRefGoogle Scholar
  14. PDXL Version 2.0.3.0, PDXL Version 2.0.3.0. (2011). Integrated X-ray powder diffraction software (pp. 196–8666). Tokyo: Rigaku Corporation.Google Scholar
  15. Petrović, T., Birke, M., Petrović, B., Nikolov, J., Dragišić, V., & Živanović, V. (2015). Hydrogeochemistry of thermal groundwaters in the Serbian crystalline core region. Journal of Geochemical Exploration, 159, 101–114.CrossRefGoogle Scholar
  16. Picot, J. B., Mortha, G., Rueff, M., & Nortier, P. (2012). A thermodynamically consistent model for burkeite solubility. Chemical Engineering Science, 68, 383–391.CrossRefGoogle Scholar
  17. Powder Diffraction File, PDF-2 Database and announcement of new database release (2012) International Centre for Data (ICDD).Google Scholar
  18. Rodríguez, A. (2011) Water-rock interaction of silicic rocks: An experimental and geochemical modelling study (pp. 1–44). University of Iceland, MSc thesis, UNU-GTP, Iceland, report.Google Scholar
  19. Shi, B., & Rousseau, R. W. (2003). Structure of burkeite and a new crystalline species obtained from solutions of sodium carbonate and sodium sulphate. Journal of Physical Chemistry, 107, 6932–6937.CrossRefGoogle Scholar
  20. Todorović, B. Ž., Stojiljković, D. T., Pantić, T. P., Mitić, N. Č., Nikolić, L. S., & Cakić, S. M. (2016). Hydrogeochemistry and aragonite scaling in the Sijarinska Spa (Serbia). Carbonate Evaporite, 31, 367–374.CrossRefGoogle Scholar
  21. Wohletz, K., & Heiken, G. (1992). Volcanology and geothermal energy. Berkeley: University of California Press.Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  • Bratislav Ž. Todorović
    • 1
    Email author
  • Dragan T. Stojiljković
    • 1
  • Tanja Petrović Pantić
    • 2
  • Branko Matović
    • 3
  • Marija Prekajski Djordjević
    • 3
  • Sanja M. Petrović
    • 1
  • Milena S. Stojiljković
    • 1
  • Miloš M. Stevanović
    • 1
  1. 1.Faculty of TechnologyUniversity of NišLeskovacSerbia
  2. 2.Geological Survey of SerbiaBelgradeSerbia
  3. 3.Vinca Institute of Nuclear ScienceUniversity of BelgradeBelgradeSerbia

Personalised recommendations