Advertisement

Spatio-Temporal Analysis of Land Use/Land Cover Changes in an Ecologically Fragile Area—Alappuzha District, Southern Kerala, India

  • Geena Prasad
  • Maneesha Vinodini Ramesh
Original Paper
  • 69 Downloads

Abstract

Concomitant with careless human interference in the delicate environmental balance, the Earth’s surface is witnessing a variety of changes in land use and land cover (LULC). Acquisition of a sound understanding of LULC is an important aspect of maintaining a sustainable, benign, healthy environment. The present work highlights a spatiotemporal study on the LULC features of Alappuzha District, an ecologically fragile area in southern Kerala, a state in South India. The study area faces diverse environmental challenges including decline of landforms, rising sea levels, population expansion and anthropogenic encroachments on the ecological balance. This investigation compiles an audited account of the modifications, in each class of LULC, using geospatial technologies. We interpreted satellite imagery from the Landsat 8 and the Landsat multispectral scanner for the years 1973 and 2017. The LULC aspects were categorized into seven classes: waterbody, waterlogged area, mixed vegetation, built-up land, uncultivated area, paddy field and sandy area. Our findings affirm that the expansiveness of the built-up land area is directly proportional to the growth of the population. Advanced technologies such as remote sensing and geographic information system accentuate alterations in land use patterns over time and the extent to which the changes affect the human population and the natural habitat. We verified the results of our research by assessment of accuracy and ground truth confirmation of the LULC features.

Keywords

Alappuzha Land use Land cover Landsat Accuracy 

Notes

Acknowledgments

We would like to express our deep gratitude to the Chancellor of Amrita Vishwa Vidyapeetham, Dr. Mata Amritanandamayi Devi, and a world-renowned humanitarian, popularly known as Amma. Her inspiring mentorship facilitates a unique opportunity for a seamless blend of advanced scholarship and spiritual development. We wish to extend our thanks to Indian Meteorological Division for providing the data, to Mr. Vinod P.G, GeoVin Solutions for providing technical assistance, and to the anonymous reviewers.

References

  1. Adams, J. B., DE Sabol, Kapos, V., Filho, R. A., Roberts, D. A., Smith, M. O., et al. (1995). Classification of multi-spectral images based on fractions of end members: Applications to land-cover change in the Brazilian Amazon. Remote Sensing of Environment.  https://doi.org/10.1016/0034-4257(94)00098-8.CrossRefGoogle Scholar
  2. Afify, H. A. (2011). Evaluation of change detection techniques for monitoring land cover changes: A case study in new Burg El-Arab area. Alexandria Engineering Journal, 50, 187–195.CrossRefGoogle Scholar
  3. Ahlqvist, O., Keukelaar, J., & Oukbir, K. (2000). Rough classification and accuracy assessment. International Journal of Geographical Information Science.  https://doi.org/10.1080/13658810050057605.CrossRefGoogle Scholar
  4. Amare, S. (2016). Land use/cover change at Infraz watershed by using GIS and remote sensing techniques, northwestern Ethiopia. International Journal of River Basin Management.  https://doi.org/10.1080/15715124.2015.1095199.CrossRefGoogle Scholar
  5. Amin, A., & Fazal, S. (2012). Land transformation analysis using remote sensing and GIS techniques (a case study). Journal of Geographic Information System, 4, 229–236.CrossRefGoogle Scholar
  6. Avery, T. E., & Berlin, G. L. (1992). Fundamentals of remote sensing and airphoto interpretation (5th ed., p. 472). New York: Macmillan Publishing Company.Google Scholar
  7. Bradley, B. A. (2009). Accuracy assessment of mixed land cover using a GIS-designed sampling scheme. International Journal of Remote Sensing, 30(13), 3515–3529.CrossRefGoogle Scholar
  8. Carlotto, M. J. (2009). Effect of errors in ground truth on classification accuracy. International Journal of Remote Sensing, 30(18), 4831–4849.CrossRefGoogle Scholar
  9. Caselles, V., & Lopez Garcia, M. J. (1989). An alternative simple approach to estimate atmospheric correction in multitemporal studies. International Journal of Remote Sensing.  https://doi.org/10.1080/01431168908903951.CrossRefGoogle Scholar
  10. Central Ground Water Board. (2013). Ground water information booklet of Alappuzha district, Kerala. http://cgwb.gov.in/District_Profile/Kerala/Alappuzha%20.pdf. Accessed February 20, 2018.
  11. Chen, J., Gong, P., He, C., Pu, R., & Shi, P. (2003). Land-use/land-cover change detection using improved change-vector analysis. Photogrammetric Engineering and Remote Sensing, 69, 369–379.CrossRefGoogle Scholar
  12. Coppin, P., & Bauer, M. (1996). Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews, 13, 207–234.CrossRefGoogle Scholar
  13. Coppin, P., Jonckheere, I., Nackaerts, K., & Muys, B. (2004). Digital change detection methods in ecosystem monitoring: A review. International Journal of Remote Sensing, 25(9), 1565–1596.CrossRefGoogle Scholar
  14. Eastman, J. R. (2003). IDRISI Kilimanjaro guide to GIS and image processing. https://www.mtholyoke.edu/courses/tmillett/course/geog307/files/Kilimanjaro%20Manual.pdf. Accessed February 25, 2018.
  15. El-Asmar, H. M., Hereher, M. E., & El Kafrawy, S. B. (2013). Surface area change detection of the Burullus Lagoon, North of the Nile Delta, Egypt, using water indices: A remote sensing approach. Egyptian Journal of Remote Sensing and Space Science.  https://doi.org/10.1016/j.ejrs.2013.04.004.CrossRefGoogle Scholar
  16. ERDAS Field Guide. (1999) Earth resources data analysis system (p. 628). Atlanta, Georgia: ERDAS Inc. http://web.pdx.edu/~emch/ip1/FieldGuide.pdf. Accessed January 12, 2018.
  17. Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201.CrossRefGoogle Scholar
  18. Foody, G. M. (2010). Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sensing of Environment, 114, 2271–2285.CrossRefGoogle Scholar
  19. Huang, S., Hsieh, H. (2012). The study of the land-use change factors in coastal land subsidence area in Taiwan. In: 2012 International conference on environment, energy and biotechnology (IPCBEE) (Vol. 33, pp. 70–74). Singapore: IACSIT Press.Google Scholar
  20. Iqbal, M. F., & Khan, I. A. (2014). Spatiotemporal land use land cover change analysis and erosion risk mapping of Azad Jammu and Kashmir, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 17, 209–229.CrossRefGoogle Scholar
  21. Jaiswal, R. K., Saxena, R., & Mukherjee, S. (1999). Application of remote sensing technology for land use/land cover change analysis. Journal of the Indian Society of Remote Sensing, 27(2), 123–128.CrossRefGoogle Scholar
  22. James, R. A., Ernest, E. H., John, T. R., Richard, E. W. (1976). Land use and land cover classification system for use with remote sensor data, geological survey professional paper 964. http://www.pbcgis.com/data_basics/anderson.pdf. Accessed February 20, 2018.
  23. Jayappa, K. S., Mitra, D., & Mishra, A. K. (2006). Coastal geomorphological and land-use and land-cover study of Sagar Island, Bay of Bengal (India) using remotely sensed data. International Journal of Remote Sensing.  https://doi.org/10.1080/01431160500500375.CrossRefGoogle Scholar
  24. Jensen, J. R. (1996). Introductory digital image processing: A remote sensing perspective (p. 318). Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  25. Joshi, C. M., de Leeuw, J., Van Duren, I. C. (2004). Remote sensing and GIS applications for mapping and spatial modelling of invasive species. In ISPRS 2004: Proceedings of the XXth ISPRS congress: Geo-imagery bridging continents, 12–23 July 2004. Istanbul, Turkey: International Society for Photogrammetry and Remote Sensing (ISPRS). https://webapps.itc.utwente.nl/librarywww/papers_2004/peer_conf/joshi.pdf. Accessed February 15, 2018.
  26. Joshi, R. R., Warthe, M., Dwivedi, S., Vijay, R., & Chakrabarti, T. (2011). Monitoring changes in land use land cover of Yamuna riverbed in Delhi: A multi-temporal analysis. International Journal of Remote Sensing, 32(24), 9547–9558.CrossRefGoogle Scholar
  27. Kaliraj, S., & Chandrasekar, N. (2012). Spectral recognition techniques and MLC of IRS P6 LISS III image for coastal landforms extraction along South West Coast of Tamilnadu, India. Bonfring International Journal of Advances in Image Processing.  https://doi.org/10.9756/BIJAIP.10028.CrossRefGoogle Scholar
  28. Kaliraj, S., Chandrasekar, N., Ramachandran, K. K., Srinivas, Y., & Saravanan, S. (2017). Coastal land use and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. Egyptian Journal of Remote Sensing and Space Science, 20(2), 169–185.CrossRefGoogle Scholar
  29. Kawakubo, F. S., Morato, R. G., Nader, R. S., & Luchiari, A. (2011). Mapping changes in coastline geomorphic features using Landsat TM and ETM imagery: Examples in South-eastern Brazil. International Journal of Remote Sensing, 32(9), 2547–2562.CrossRefGoogle Scholar
  30. Lea, C., Curtis, A. C. (2010). Thematic accuracy assessment procedures: National Park Service Vegetation Inventory, version 2.0. Natural Resource Report NPS/2010/NRR—2010/204, National Park Service, Fort Collins, Colorado, USA. https://www1.usgs.gov/vip/standards/NPSVI_Accuracy_Assessment_Guidelines_ver2.pdf. Accessed February 24, 2018.
  31. Lele, N., & Joshi, P. K. (2009). Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of forest cover changes in North-East India during 1972–1999. Environmental Monitoring and Assessment, 156, 159–170.CrossRefGoogle Scholar
  32. Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2407.CrossRefGoogle Scholar
  33. Mamtha, R., Jasmine, N. M., & Geetha, P. (2016). Analysis of deforestation and land use changes in Kotagiri Taluk of Nilgiris District. Indian Journal of Science and Technology.  https://doi.org/10.17485/ijst/2016/v9i44/105326.CrossRefGoogle Scholar
  34. Misra, A., & Balaji, R. (2015). Decadal changes in the land use/land cover and shoreline along the coastal districts of southern Gujarat, India. Environmental Monitoring and Assessment, 187, 461.CrossRefGoogle Scholar
  35. Misra, A., Murali, R. M., & Vethamony, P. (2013). Assessment of the land use/land cover (LU/LC) and mangrove changes along the Mandovi–Zuari estuarine complex of Goa. Arabian Journal of Geosciences, 8(1), 267–279.CrossRefGoogle Scholar
  36. Mohammady, M., Moradi, H. R., Zeinivand, H., & Temme, A. (2015). A comparison of supervised, unsupervised and synthetic land use classification methods in the north of Iran. International Journal of Environmental Science and Technology, 12(5), 1515–1526.CrossRefGoogle Scholar
  37. Moscrip, A. L., & Montgomery, D. R. (1997). Urbanization flood, frequency and salmon abundance in Puget Lowland Streams. Journal of the American Water Resources Association, 33(6), 1289–1297.CrossRefGoogle Scholar
  38. Mujabar, P. S., & Chandrasekar, N. (2013). Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arabian Journal of Geosciences, 6, 647–664.CrossRefGoogle Scholar
  39. Muttitanon, W., & Tripathi, N. K. (2005). Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. International Journal of Remote Sensing, 26(11), 2311–2323.CrossRefGoogle Scholar
  40. Petit, C. C., & Lambin, E. F. (2001). Integration of multi-source remote sensing data for land cover change detection. Journal of Geographical Information Science.  https://doi.org/10.1080/13658810110074483.CrossRefGoogle Scholar
  41. Prasad, G., Vinod, P. G., Shaleena, E. J. (2018). AIP conference proceedings (Vol. 1952(1), p. 020028), international conference on electrical, electronics, materials and applied science.  https://doi.org/10.1063/1.5031990.
  42. Rawat, J. S., Biswas, V., & Kumar, M. (2013). Changes in land use/cover using geospatial techniques: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. Egyptian Journal of Remote Sensing and Space Science, 16(1), 111–117.CrossRefGoogle Scholar
  43. Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84.CrossRefGoogle Scholar
  44. Reddy, C. S., & Roy, A. (2008). Assessment of three decade vegetation dynamics in mangroves of Godavari Delta, India using multi-temporal satellite data and GIS. Research Journal of Environmental Science.  https://doi.org/10.3923/rjes.2008.108.115.CrossRefGoogle Scholar
  45. Riebsame, W. E., Meyer, W. B., & Turner, B. L. (1994). Modeling land-use and cover as part of global environmental change. Climatic Change, 28, 45–64.CrossRefGoogle Scholar
  46. Shanmugapriya, E. V., Samhitha, S. V., & Geetha, P. A. (2016). Case study on the landuse pattern of Kanyakumari district using GIS. Journal of Applied Geology and Geophysics.  https://doi.org/10.9790/0990-0404023641.CrossRefGoogle Scholar
  47. Smith, J. H., Stehman, S. V., Wickham, J. D., & Yang, L. (2003). Effects of landscape characteristics on land-cover class accuracy. Remote Sensing of Environment, 84, 342–349.CrossRefGoogle Scholar
  48. Szuster, B. W., Chen, Q., & Borger, M. (2011). A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2), 525–532.CrossRefGoogle Scholar
  49. Wickware, G. M., & Howarth, P. J. (1981). Change detection in the Peace-Athabasca delta using digital Landsat data. Remote Sensing of Environment, 11, 9–25.CrossRefGoogle Scholar
  50. Yirsaw, E., Wu, W., Shi, X., Temesgen, H., & Bekele, B. (2017). Land Use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the SuXi-Chang Region. Sustainability, 9(7), 1204p.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAmrita Vishwa VidyapeethamAmritapuriIndia
  2. 2.Amrita Center for Wireless Networks and ApplicationsAmrita Vishwa VidyapeethamAmritapuriIndia

Personalised recommendations