Multivariate Geostatistical Simulation on Block-Support in the Presence of Complex Multivariate Relationships: Iron Ore Deposit Case Study
- 134 Downloads
Abstract
A reliable and realistic subsurface resource spatial modeling is a common and critical task for geosciences projects (mining, petroleum and environmental) because the models are then integrated with downstream processes to evaluate process performance. Coregionalized variables considered in resource modeling are often related through compositional constraints and complex dependence relationships. Satisfying these constraints and relationships in spatial modeling is a practical requirement to obtain accurate predictions of mineral resources in the subsurface. This paper presents a multistage method that addresses these issues and allows the multivariate simulation of cross-correlated variables with complex features directly on block-support, conditionally to the information of drill hole data at a quasi-point support. At a first stage, a chained transformation is used for removal multivariate complexities and decorrelation of the variables. Then, this chained transformation is adapted within the direct block-support sequential Gaussian simulation algorithm. The back-transformation of the chained transformation reintroduces complex features and correlations. A proof of the concept using a data set from the Gole-Gohar iron ore deposit in Iran demonstrates the performance of the proposed approach, the results of which are then compared against a common modeling approach.
Keywords
Projection pursuit multivariate transform Flow anamorphosis Minimum/maximum autocorrelation factors Geostatistical simulation Multivariate modeling Change of supportNotes
Acknowledgments
Special thanks apply to Raimon Tolosana-Delgado for guidance on running flow anamorphosis. Constructive comments from anonymous reviewers helped improve the manuscript.
References
- Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139–177.Google Scholar
- Babaki, A., & Aftabi, A. J. (2006). Investigation on the model of iron mineralization at Gol Gohar iron deposit, Sirjan-Kerman. Geosciences Scientific Quarterly Journal, 61, 40–59.Google Scholar
- Barnett, R. M. (2015). Managing complex multivariate relations in the presence of incomplete spatial data. PhD thesis, University of Alberta.Google Scholar
- Barnett, R. M., & Deutsch, C. V. (2012). Practical implementation of non-linear transforms for modeling geometallurgical variables. In P. Abrahamsen, R. Hauge, & O. Kolbjørnsen (Eds.), Geostatistics Oslo 2012 (pp. 409–422). Dordrecht: Springer.Google Scholar
- Barnett, R. M., Manchuk, J. G., & Deutsch, C. V. (2013). Projection pursuit multivariate transform. Mathematical Geosciences, 46(3), 337–359.CrossRefGoogle Scholar
- Barnett, R. M., Manchuk, J. G., & Deutsch, C. V. (2016). The projection-pursuit multivariate transform for improved continuous variable modeling. SPE Journal, 21(6), 2010–2026.CrossRefGoogle Scholar
- Boucher, A., & Dimitrakopoulos, R. (2009). Block simulation of multiple correlated variables. Mathematical Geosciences, 41(2), 215–237.CrossRefGoogle Scholar
- Boucher, A., & Dimitrakopoulos, R. (2012). Multivariate block-support simulation of the Yandi iron ore deposit, Western Australia. Mathematical Geosciences, 44(4), 449–468.CrossRefGoogle Scholar
- Boucher, A., Dimitrakopoulos, R., & Vargas-Guzmán, J. A. (2005). Joint simulations, optimal drillhole spacing and the role of the stockpile. In O. Leuangthong & C. V. Deutsch (Eds.), Geostatistics Banff 2004 (pp. 35–44). Dordrecht: Springer.Google Scholar
- Chilès, J.-P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty (2nd ed.). Hoboken: John Wiley & Sons.CrossRefGoogle Scholar
- David, M. (1988). Handbook of applied advanced geostatistical ore reserve estimation. Volume 6: Developments in geomathematics. Amsterdam: Elsevier.Google Scholar
- De Freitas Silva, M., & Dimitrakopoulos, R. (2015). Simulation of weathered profiles coupled with multivariate block-support simulation of the Puma nickel laterite deposit, Brazil. Les Cahiers du GERAD, G-2015-90, pp. 1–24.Google Scholar
- Desbarats, A. J., & Dimitrakopoulos, R. (2000). Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors. Mathematical Geology, 32(8), 919–942.CrossRefGoogle Scholar
- Deutsch, C. V., & Journel, A. G. (1992). GSLIB: Geostatistical software library and user’s guide (p. 340). New York: Oxford University Press.Google Scholar
- Emery, X., & Ortiz, J. M. (2011). Two approaches to direct block-support conditional co-simulation. Computers & Geosciences, 37(8), 1015–1025.CrossRefGoogle Scholar
- Glacken, I. M. (1996). Change of support by direct conditional block simulation. Stanford: Stanford University.Google Scholar
- Goovaerts, P. (1993). Spatial orthogonality of the principal components computed from coregionalized variables. Mathematical Geology, 25(3), 281–302.CrossRefGoogle Scholar
- Henze, N., & Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics-Theory and Methods, 19(10), 3595–3617.CrossRefGoogle Scholar
- Hosseini, S. A., Asghari, O., & Emery, X. (2017a). Direct block-support simulation of grades in multi-element deposits: Application to recoverable mineral resource estimation at sungun porphyry deposit. Journal of the Southern African Institute of Mining and Metallurgy, 117(6), 577–585.CrossRefGoogle Scholar
- Hosseini, S. A., Asghari, O., & Emery, X. (2017b). Multivariate simulation of block-support grades at Mehdiabdad deposit, Iran. Applied Earth Science (TIMM B), 126(3), 146–157.CrossRefGoogle Scholar
- Hosseini, S. A., Asghari, O., Emery, X., et al. (2017c). Forecasting the grade-tonnage curves and their uncertainty at Mehdiabad Deposit-Yazd, Central Iran. Bollettino di Geofisica Teorica e Applicata, 58(3), 217–232.Google Scholar
- Isaaks, E. H. (1991). The application of Monte Carlo methods to the analysis of spatially correlated data. Stanford: Stanford University.Google Scholar
- Jafarzadeh, A., Qurbani, M., & Pezeshkpor, M. (1995). Iran geology-iron ores. Tehran, Iran: Iran Geology Organization.Google Scholar
- Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. London: Academic Press.Google Scholar
- Journel, A. G., & Kyriakidis, P. C. (2004). Evaluation of mineral reserves: A simulation approach. Oxford: Oxford University Press.Google Scholar
- Leuangthong, O., & Deutsch, C. V. (2003). Stepwise conditional transformation for simulation of multiple variables. Mathematical Geology, 35(2), 155–173.CrossRefGoogle Scholar
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530.CrossRefGoogle Scholar
- Mueller, U., van den Boogaart, K. G., & Tolosana-Delgado, R. (2017). A truly multivariate normal score transform based on Lagrangian flow. In J. Gómez-Hernández, J. Rodrigo-Ilarri, M. Rodrigo-Clavero, E. Cassiraga, & J. Vargas-Guzmán (Eds.), Geostatistics Valencia 2016 (pp. 107–118). Cham: Springer.CrossRefGoogle Scholar
- Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3), 1065–1076.CrossRefGoogle Scholar
- Rondon, O. (2012). Teaching aid: Minimum/maximum autocorrelation factors for joint simulation of attributes. Mathematical Geosciences, 44(4), 469–504.CrossRefGoogle Scholar
- Rondon, O., & Tran, T. (2008). Multivariate simulation using min/max autocorrelation factors: Practical aspect and case studies in the mining industry. Geostats, 1, 269–278.Google Scholar
- Royston, J. P. (1983). Some techniques for assessing multivarate normality based on the Shapiro-Wilk W. Applied Statistics, 32(2), 121–133.CrossRefGoogle Scholar
- Scott, D. W. (2015). Multivariate density estimation: Theory, practice, and visualization. Hoboken: John Wiley & Sons.Google Scholar
- Svoboda, J. (2004). Magnetic techniques for the treatment of materials. Dordrecht: Springer Science & Business Media.Google Scholar
- Tercan, A. E. (1999). Importance of orthogonalization algorithm in modeling conditional distributions by orthogonal transformed indicator methods. Mathematical Geology, 31(2), 155–173.Google Scholar
- Tolosana-Delgado, R., & van den Boogaart, K. G. (2011). Geostatistics for Compositions, Pawlowsky-Glahn & Buccianti edn. Compositional data analysis: Theory and applications (pp. 73–86). New York: Wiley.CrossRefGoogle Scholar
- van den Boogaart, K. G., Mueller, U., & Tolosana-Delgado, R. (2017). An affine equivariant multivariate normal score transform for compositional data. Mathematical Geosciences, 49(2), 1–21.Google Scholar
- van den Boogaart, K. G., Tolosana-Delgado, R., & Mueller, U. (2015). An affine equivariant anamorphosis for compositional data. In The 17th annual conference of the international association for mathematical geosciences, pp. 1302–1311.Google Scholar
- Verly, G. W. (1984a). Estimation of spatial point and block distributions: The multigaussian model. PhD thesis, Stanford University, Stanford, CA.Google Scholar
- Verly, G. (1984b). The block distribution given a point multivariate normal distribution. In G. Verly, M. David, A. G. Journel, & A. Maréchal (Eds.), Geostatistics for natural resources characterization (pp. 495–515). Dordrecht: Springer.CrossRefGoogle Scholar
- Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications. Springer Science & Business Media.Google Scholar
- Wang, C.-C. (2015). A MATLAB package for multivariate normality test. Journal of Statistical Computation and Simulation, 85(1), 166–188.CrossRefGoogle Scholar
- Ward, C., & Mueller, U. (2012). Multivariate estimation using log ratios: A worked alternative. In P. Abrahamsen, R. Hague, & J. Kolb (Eds.), Geostatistics Oslo 2012 (pp. 333–343). Dordrecht: Springer.CrossRefGoogle Scholar