Advertisement

Natural Resources Research

, Volume 28, Issue 1, pp 125–144 | Cite as

Multivariate Geostatistical Simulation on Block-Support in the Presence of Complex Multivariate Relationships: Iron Ore Deposit Case Study

  • Seyed Ali Hosseini
  • Omid AsghariEmail author
Original Paper
  • 134 Downloads

Abstract

A reliable and realistic subsurface resource spatial modeling is a common and critical task for geosciences projects (mining, petroleum and environmental) because the models are then integrated with downstream processes to evaluate process performance. Coregionalized variables considered in resource modeling are often related through compositional constraints and complex dependence relationships. Satisfying these constraints and relationships in spatial modeling is a practical requirement to obtain accurate predictions of mineral resources in the subsurface. This paper presents a multistage method that addresses these issues and allows the multivariate simulation of cross-correlated variables with complex features directly on block-support, conditionally to the information of drill hole data at a quasi-point support. At a first stage, a chained transformation is used for removal multivariate complexities and decorrelation of the variables. Then, this chained transformation is adapted within the direct block-support sequential Gaussian simulation algorithm. The back-transformation of the chained transformation reintroduces complex features and correlations. A proof of the concept using a data set from the Gole-Gohar iron ore deposit in Iran demonstrates the performance of the proposed approach, the results of which are then compared against a common modeling approach.

Keywords

Projection pursuit multivariate transform Flow anamorphosis Minimum/maximum autocorrelation factors Geostatistical simulation Multivariate modeling Change of support 

Notes

Acknowledgments

Special thanks apply to Raimon Tolosana-Delgado for guidance on running flow anamorphosis. Constructive comments from anonymous reviewers helped improve the manuscript.

References

  1. Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139–177.Google Scholar
  2. Babaki, A., & Aftabi, A. J. (2006). Investigation on the model of iron mineralization at Gol Gohar iron deposit, Sirjan-Kerman. Geosciences Scientific Quarterly Journal, 61, 40–59.Google Scholar
  3. Barnett, R. M. (2015). Managing complex multivariate relations in the presence of incomplete spatial data. PhD thesis, University of Alberta.Google Scholar
  4. Barnett, R. M., & Deutsch, C. V. (2012). Practical implementation of non-linear transforms for modeling geometallurgical variables. In P. Abrahamsen, R. Hauge, & O. Kolbjørnsen (Eds.), Geostatistics Oslo 2012 (pp. 409–422). Dordrecht: Springer.Google Scholar
  5. Barnett, R. M., Manchuk, J. G., & Deutsch, C. V. (2013). Projection pursuit multivariate transform. Mathematical Geosciences, 46(3), 337–359.CrossRefGoogle Scholar
  6. Barnett, R. M., Manchuk, J. G., & Deutsch, C. V. (2016). The projection-pursuit multivariate transform for improved continuous variable modeling. SPE Journal, 21(6), 2010–2026.CrossRefGoogle Scholar
  7. Boucher, A., & Dimitrakopoulos, R. (2009). Block simulation of multiple correlated variables. Mathematical Geosciences, 41(2), 215–237.CrossRefGoogle Scholar
  8. Boucher, A., & Dimitrakopoulos, R. (2012). Multivariate block-support simulation of the Yandi iron ore deposit, Western Australia. Mathematical Geosciences, 44(4), 449–468.CrossRefGoogle Scholar
  9. Boucher, A., Dimitrakopoulos, R., & Vargas-Guzmán, J. A. (2005). Joint simulations, optimal drillhole spacing and the role of the stockpile. In O. Leuangthong & C. V. Deutsch (Eds.), Geostatistics Banff 2004 (pp. 35–44). Dordrecht: Springer.Google Scholar
  10. Chilès, J.-P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty (2nd ed.). Hoboken: John Wiley & Sons.CrossRefGoogle Scholar
  11. David, M. (1988). Handbook of applied advanced geostatistical ore reserve estimation. Volume 6: Developments in geomathematics. Amsterdam: Elsevier.Google Scholar
  12. De Freitas Silva, M., & Dimitrakopoulos, R. (2015). Simulation of weathered profiles coupled with multivariate block-support simulation of the Puma nickel laterite deposit, Brazil. Les Cahiers du GERAD, G-2015-90, pp. 1–24.Google Scholar
  13. Desbarats, A. J., & Dimitrakopoulos, R. (2000). Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors. Mathematical Geology, 32(8), 919–942.CrossRefGoogle Scholar
  14. Deutsch, C. V., & Journel, A. G. (1992). GSLIB: Geostatistical software library and user’s guide (p. 340). New York: Oxford University Press.Google Scholar
  15. Emery, X., & Ortiz, J. M. (2011). Two approaches to direct block-support conditional co-simulation. Computers & Geosciences, 37(8), 1015–1025.CrossRefGoogle Scholar
  16. Glacken, I. M. (1996). Change of support by direct conditional block simulation. Stanford: Stanford University.Google Scholar
  17. Goovaerts, P. (1993). Spatial orthogonality of the principal components computed from coregionalized variables. Mathematical Geology, 25(3), 281–302.CrossRefGoogle Scholar
  18. Henze, N., & Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics-Theory and Methods, 19(10), 3595–3617.CrossRefGoogle Scholar
  19. Hosseini, S. A., Asghari, O., & Emery, X. (2017a). Direct block-support simulation of grades in multi-element deposits: Application to recoverable mineral resource estimation at sungun porphyry deposit. Journal of the Southern African Institute of Mining and Metallurgy, 117(6), 577–585.CrossRefGoogle Scholar
  20. Hosseini, S. A., Asghari, O., & Emery, X. (2017b). Multivariate simulation of block-support grades at Mehdiabdad deposit, Iran. Applied Earth Science (TIMM B), 126(3), 146–157.CrossRefGoogle Scholar
  21. Hosseini, S. A., Asghari, O., Emery, X., et al. (2017c). Forecasting the grade-tonnage curves and their uncertainty at Mehdiabad Deposit-Yazd, Central Iran. Bollettino di Geofisica Teorica e Applicata, 58(3), 217–232.Google Scholar
  22. Isaaks, E. H. (1991). The application of Monte Carlo methods to the analysis of spatially correlated data. Stanford: Stanford University.Google Scholar
  23. Jafarzadeh, A., Qurbani, M., & Pezeshkpor, M. (1995). Iran geology-iron ores. Tehran, Iran: Iran Geology Organization.Google Scholar
  24. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. London: Academic Press.Google Scholar
  25. Journel, A. G., & Kyriakidis, P. C. (2004). Evaluation of mineral reserves: A simulation approach. Oxford: Oxford University Press.Google Scholar
  26. Leuangthong, O., & Deutsch, C. V. (2003). Stepwise conditional transformation for simulation of multiple variables. Mathematical Geology, 35(2), 155–173.CrossRefGoogle Scholar
  27. Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530.CrossRefGoogle Scholar
  28. Mueller, U., van den Boogaart, K. G., & Tolosana-Delgado, R. (2017). A truly multivariate normal score transform based on Lagrangian flow. In J. Gómez-Hernández, J. Rodrigo-Ilarri, M. Rodrigo-Clavero, E. Cassiraga, & J. Vargas-Guzmán (Eds.), Geostatistics Valencia 2016 (pp. 107–118). Cham: Springer.CrossRefGoogle Scholar
  29. Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3), 1065–1076.CrossRefGoogle Scholar
  30. Rondon, O. (2012). Teaching aid: Minimum/maximum autocorrelation factors for joint simulation of attributes. Mathematical Geosciences, 44(4), 469–504.CrossRefGoogle Scholar
  31. Rondon, O., & Tran, T. (2008). Multivariate simulation using min/max autocorrelation factors: Practical aspect and case studies in the mining industry. Geostats, 1, 269–278.Google Scholar
  32. Royston, J. P. (1983). Some techniques for assessing multivarate normality based on the Shapiro-Wilk W. Applied Statistics, 32(2), 121–133.CrossRefGoogle Scholar
  33. Scott, D. W. (2015). Multivariate density estimation: Theory, practice, and visualization. Hoboken: John Wiley & Sons.Google Scholar
  34. Svoboda, J. (2004). Magnetic techniques for the treatment of materials. Dordrecht: Springer Science & Business Media.Google Scholar
  35. Tercan, A. E. (1999). Importance of orthogonalization algorithm in modeling conditional distributions by orthogonal transformed indicator methods. Mathematical Geology, 31(2), 155–173.Google Scholar
  36. Tolosana-Delgado, R., & van den Boogaart, K. G. (2011). Geostatistics for Compositions, Pawlowsky-Glahn & Buccianti edn. Compositional data analysis: Theory and applications (pp. 73–86). New York: Wiley.CrossRefGoogle Scholar
  37. van den Boogaart, K. G., Mueller, U., & Tolosana-Delgado, R. (2017). An affine equivariant multivariate normal score transform for compositional data. Mathematical Geosciences, 49(2), 1–21.Google Scholar
  38. van den Boogaart, K. G., Tolosana-Delgado, R., & Mueller, U. (2015). An affine equivariant anamorphosis for compositional data. In The 17th annual conference of the international association for mathematical geosciences, pp. 1302–1311.Google Scholar
  39. Verly, G. W. (1984a). Estimation of spatial point and block distributions: The multigaussian model. PhD thesis, Stanford University, Stanford, CA.Google Scholar
  40. Verly, G. (1984b). The block distribution given a point multivariate normal distribution. In G. Verly, M. David, A. G. Journel, & A. Maréchal (Eds.), Geostatistics for natural resources characterization (pp. 495–515). Dordrecht: Springer.CrossRefGoogle Scholar
  41. Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications. Springer Science & Business Media.Google Scholar
  42. Wang, C.-C. (2015). A MATLAB package for multivariate normality test. Journal of Statistical Computation and Simulation, 85(1), 166–188.CrossRefGoogle Scholar
  43. Ward, C., & Mueller, U. (2012). Multivariate estimation using log ratios: A worked alternative. In P. Abrahamsen, R. Hague, & J. Kolb (Eds.), Geostatistics Oslo 2012 (pp. 333–343). Dordrecht: Springer.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2018

Authors and Affiliations

  1. 1.Simulation and Data Processing Laboratory, School of Mining Engineering, University College of EngineeringUniversity of TehranTehranIran

Personalised recommendations