Advertisement

Natural Resources Research

, Volume 28, Issue 1, pp 63–77 | Cite as

Hydrogeophysical Characteristics of Pan-African Aquifer Specified Through an Alternative Approach Based on the Interpretation of Vertical Electrical Sounding Data in the Adamawa Region, Central Africa

  • Z. ArétouyapEmail author
  • D. Bisso
  • P. Njandjock Nouck
  • L. E. Amougou Menkpa
  • J. Asfahani
Original Paper
  • 84 Downloads

Abstract

This study was carried out in the Adamawa region, which connects Cameroon, Central African Republic, and Nigeria together. The main objective of this work is to assess the geophysical aspects of the local Pan-African hydraulic conductivity (K), using the vertical electrical sounding technique (VES) as an alternative approach to pumping test. This economical, less-time consuming, and easy-to-process alternative technique provides more accurate hydraulic conductivity values than the traditional pumping test technique. The K values obtained by the VES technique (ranging between 0.4 and 6.0 m/day) match those obtained by the pumping tests results. A thorough analysis of the transmissivity values reveals the existence of two aquifer trends in the region: Trend-1 with transmissivity values ranging from 34.22 to 39.27 m2/day with an average value of 35.44, and Trend-2, with transmissivity values of 7.87–34.44 m2/day with an average value of 16.56. Maps of transmissivity (T), resistivity (ρ), thickness (h), transverse resistance (TR), and hydraulic conductivity (K) of the Pan-African aquifer, derived from quantitative VES data interpretation, are established. These parameters are of paramount importance to the management of groundwater resources. They are important in the sense that geological contexts similar to that of Pan-African aquifer cut across Africa and South America. Therefore, this article will be valuable to regions worldwide that are geologically similar to the Adamawa Region.

Keywords

Geophysical methods Groundwater exploration Pan-African Pumping test Transmissivity 

Notes

Acknowledgments

We are thankful to both anonymous reviewers and to Prof. John Carranza, the Editor-in-Chief, for their comments and advice that helped us improve the quality of this paper, and to Prof. Ibrahim Othman, the General Director of the Syrian Atomic Energy Commission. The first author would like to thank Dr. Amos Mfomtapmgboui for proofreading, and Dr. Isaac Mbowou for his precious technical advice.

References

  1. Allan, J. A. (1998). Virtual water: A strategic resource. Ground Water, 36, 545–546.  https://doi.org/10.1111/j.1745-6584.1998.tb02825.x.CrossRefGoogle Scholar
  2. Arétouyap, Z., Njandjock Nouck, P., Bisso, D., Nouayou, R., Lengué, B., & Lepatio Tchieg, A. (2014). Climate variability and its possible interactions with water resources in Central Africa. Journal of Applied Sciences, 14(19), 2219–2233.CrossRefGoogle Scholar
  3. Arétouyap, Z., Nouayou, R., Njandjock Nouck, P., & Asfahani, J. (2015). Aquifers productivity in the Pan-African context. Journal of Earth System Science, 124(3), 527–539.CrossRefGoogle Scholar
  4. Asfahani, J. (2007a). Geoelectrical investigation for characterizing the hydrogeological conditions in semi-arid region in Khanasser valley, Syria. Journal of Arid Environments, 68(1), 31–52.CrossRefGoogle Scholar
  5. Asfahani, J. (2007b). Neogene aquifer properties specified through the interpretation of electrical sounding data. Sallamiyeh region, central Syria. Hydrological Processes, 21(21), 2934–2943.CrossRefGoogle Scholar
  6. Asfahani, J. (2012). Quaternary aquifer transmissivity derived from vertical electrical sounding measurements in the semi-arid Khanasser valley region, Syria. Acta Geophysica, 60(4), 1143–1158.CrossRefGoogle Scholar
  7. Asfahani, J. (2013). Groundwater potential estimation deduced from vertical electrical sounding measurements in the semi-arid Khanasser Valley region, Syria. Hydrology Sciences Journal, 58, 468–482.CrossRefGoogle Scholar
  8. Bachelier, G., & Laplante, C. (1953). Un processus pédogénétique de formation des cuirasses dites latéritiques dans l’Adamaoua. Paris: ORSTOM.Google Scholar
  9. Cornacchia, M., & Dars, R. (1983). Un trait structural majeur du continent africain. Les linéaments centrafricains du Cameroun au Golfe d’Aden. Bulletin de la Société géologique de France, 7, 101–109.CrossRefGoogle Scholar
  10. Dey, H., & Morrison, H. (1979). Resistivity modeling for arbitrarily shaped 3-D structures. Geophysics, 44(4), 753.CrossRefGoogle Scholar
  11. Djeuda Tchapnga, H. B. (1988). Géologie et hydrogéologie d’un secteur de la zone mobile d’Afrique centrale: région de poli (Nord-Cameroun). Dissertation, University of Grenoble I, 304p.Google Scholar
  12. Dumont, J. F. (1986). Identification par télédétection de l’accident de la Sanaga (Cameroun). Sa position dans le contexte des grands accidents d’Afrique centrale et de la limite nord du craton congolais. Géodynamique, 1, 13–19.Google Scholar
  13. Maillet, R. (1947). The fundamental equations of electrical prospecting. Geophysics, 12, 529–556.CrossRefGoogle Scholar
  14. Maréchal, A. (1976). Géologie et géochimie des ressources thermominérales du Cameroun. Doc ORSTOM, 59, 169–176.Google Scholar
  15. Mazáč, O., & Landa, I. (1979). On determination of hydraulic conductivity and transmissivity of granular aquifers by vertical electric sounding. Journal of Geological Sciences, 16, 123–139.Google Scholar
  16. Ngako, V., Jegouzo, P., & Nzenti, J. P. (1991). Le Cisaillement Centre Camerounais. Rôle structural de la zone mobile panafricaine de l’Afrique Centrale au contact du craton du Congo. CR Academy Science II, 303(2), 369–381.Google Scholar
  17. Nguetnkam, J. P., Kamga, R., Villieras, F., Ekodeck, G. E., & Yvon, J. (2002). Typologie des argiles des vertisols et des sols fersialitiques du Nord Cameroun. Communication presented to French Group of Clays (GFA), Paris, Nov. 2002 (pp. 17–28).Google Scholar
  18. Njonfang, E., Ngako, V., Moreau, C., Affaton, P., & Diot, H. (2008). Restraining bends in high temperature shear zones: “The Central Cameroon Shear Zone”, Central Africa. Journal of African Earth Sciences, 52, 9–20.CrossRefGoogle Scholar
  19. Orellana, E., & Mooney, H. M. (1966). Master Tables and curves for vertical electrical sounding over layered structures. Madrid: Interciencia.Google Scholar
  20. Robain, H., Descloitres, M., Ritz, M., & Yene Atangana, J. Q. (1996). A multiscale electrical survery of a lateritic soil system of the rain forest of Cameroon. Journal of Applied Geophysics, 47, 237–253.CrossRefGoogle Scholar
  21. Srinivasan, V., Konar, M., & Sivapalan, M. (2017). A dynamic framework for water security. Water Security, 1, 12–20.CrossRefGoogle Scholar
  22. Tchameni, R., Mezger, R., Nsifa, N. E., & Pouclet, A. (2001). Crustal Origin of Early Proterozoïc Syenites in the Congo. Ntem Complex, South Cameroon. Lithos 57.Google Scholar
  23. Tillement, B. (1972). Hydrogéologie du Nord Cameroun: Ph.D. thesis, University of Lyon.Google Scholar
  24. Toteu, S. F., Ngako, V., Affaton, P., Nnange, J. M., & Njanko, T. H. (2000). Pan-African tectonic evolution in Central and Southern Cameroon: Tranpression and transtension during sinistral shear movements. Journal of African Earth Sciences, 36, 207–214.Google Scholar
  25. Toteu, S. F., Penaye, J., & Poudjom Djomani, Y. (2004). Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41, 73–85.CrossRefGoogle Scholar
  26. Vincent, P. M. (1970). Conséquences tectoniques de la présence d’un métamorphisme crétacé au Cameroun (pp. 431–434). Cameroun: Annuaire Faculté des Sciences, Université de Yaoundé.Google Scholar
  27. Vogel, R. M. (2017). Stochastic watershed models for hydrologic risk management. Water Security, 1, 28–35.CrossRefGoogle Scholar
  28. Zohdy, A. A. R. (1989). A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics, 54, 245–253.CrossRefGoogle Scholar
  29. Zohdy, A. A. R., & Bisdorf, R. J. (1989). Schlumberger sounding data processing and interpretation program. Washington: US Geological Survey.Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2018

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of Yaounde IYaoundéCameroon
  2. 2.Geology DepartmentAtomic Energy CommissionDamascusSyria

Personalised recommendations