Natural Resources Research

, Volume 26, Issue 4, pp 379–410 | Cite as

Natural Resources Research Publications on Geochemical Anomaly and Mineral Potential Mapping, and Introduction to the Special Issue of Papers in These Fields

  • Emmanuel John M. Carranza
Review Paper


In its 26 years of existence, the journal of Natural Resources Research (NRR) has published and continues to publish papers on geochemical anomaly and mineral potential mapping. This is consistent with its aims and scope to publish quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Over the years, NRR has contributed significantly more to the publication of developments in mineral potential mapping and notably less to the publication of developments in geochemical anomaly mapping. In more detail, NRR has contributed significantly more to the publication of research on development of robust quantitative methods for analysis and synthesis of spatial evidence of mineral potential but notably less to the publication of research on development of geologically focused models of mineral potential. The editorship of NRR recognizes the latter as a challenge to promote further research on development of numerically robust as well as geologically focused mineral potential models, and this special issue is a major initiative in response to that challenge. The recent inclusion of Natural Resources Research for coverage by the Clarivate Analytics (formerly the Institute for Scientific Information) in the Science Citation Index Expanded™ and Journal Citation Reports® (JCR) Science Edition will help make Natural Resources Research meet that challenge.


Numerical methods mineral systems GIS journal impact 



I thank my co-editor, Renguang Zuo, for his excellent handling of some of the papers submitted for consideration in this special issue. We thank all the authors for their contributions even those who have withdrawn their submissions as well as those whose papers have been rejected by the reviewers. Therefore, we are both grateful to the following individuals for their voluntary time and gracious effort to review the quality of the papers considered in this special issue: Maysam Abedi, Hooshang Asadi, Pouran Behnia, Antonella Buccianti, Matthew Cracknell, David Cohen, Brent Elliott, Mark Gettings, Mario Gonçalves, Eric Grunsky, Jeff Harris, Charlie Kirkwood, Oliver Kreuzer, Yue Liu, Ahmad Mokhtari, Charles Moon, Vesa Nykänen, Greg Partington, Martiya Sadeghi, Andrew Skabar, Qingfei Wang, Wenlei Wang and Mahyar Yousefi.


From NRR

  1. Agterberg, F. P. (1992). Combining indicator patterns in weights of evidence modeling for resource evaluation. Nonrenewable Resources, 1, 39–50.CrossRefGoogle Scholar
  2. Agterberg, F. P. (1993). Calculation of the variance of mean values for blocks in regional resource evaluation studies. Nonrenewable Resources, 2, 312–324.CrossRefGoogle Scholar
  3. Agterberg, F. (2011). A modified weights-of-evidence method for regional mineral resource estimation. Natural Resources Research, 20, 95–101.CrossRefGoogle Scholar
  4. Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research, 14, 1–17.CrossRefGoogle Scholar
  5. Agterberg, F. P., & Cheng, Q. (2002). Conditional independence test for weights-of-evidence modeling. Natural Resources Research, 11, 249–255.CrossRefGoogle Scholar
  6. An, P., Moon, W. M., & Bonham-Carter, G. F. (1994a). An object-oriented knowledge representation structure for exploration data integration. Nonrenewable Resources, 3, 132–145.CrossRefGoogle Scholar
  7. An, P., Moon, W. M., & Bonham-Carter, G. F. (1994b). Uncertainty management in integration of exploration data using the belief function. Nonrenewable Resources, 3, 60–71.CrossRefGoogle Scholar
  8. Asadi, H. H., Sansoleimani, A., Fatehi, M., & Carranza, E. J. M. (2016). An AHP–TOPSIS predictive model for district-scale mapping of porphyry Cu–Au potential: A case study from Salafchegan Area (Central Iran). Natural Resources Research, 25, 417–429.CrossRefGoogle Scholar
  9. Behnia, P. (2007). Application of radial basis functional link networks to exploration for Proterozoic mineral deposits in Central Iran. Natural Resources Research, 16, 147–155.CrossRefGoogle Scholar
  10. Bougrain, L., Gonzalez, M., Bouchot, V., Cassard, D., Lips, A. L. W., Alexandre, F., et al. (2003). Knowledge recovery for continental-scale mineral exploration by neural networks. Natural Resources Research, 12, 173–181.CrossRefGoogle Scholar
  11. Brown, W. M., Gedeon, T. D., & Groves, D. I. (2003a). Use of noise to augment training data: A neural network method of mineral–potential mapping in regions of limited known deposit examples. Natural Resources Research, 12, 141–152.CrossRefGoogle Scholar
  12. Brown, W. M., Groves, D. I., & Gedeon, T. D. (2003b). Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Natural Resources Research, 12, 183–200.CrossRefGoogle Scholar
  13. Carranza, E. J. M. (2004). Weights of evidence modeling of mineral potential: A case study using small number of prospects, Abra, Philippines. Natural Resources Research, 13, 173–187.CrossRefGoogle Scholar
  14. Carranza, E. J. M. (2015). Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values. Natural Resources Research, 24, 291–304.CrossRefGoogle Scholar
  15. Carranza, E. J. M. (2017). Geochemical mineral exploration: Should we use enrichment factors or log-ratios? Natural Resources Research. doi: 10.1007/s11053-016-9318-z.Google Scholar
  16. Carranza, E. J. M., & Hale, M. (2000). Geologically constrained probabilistic mapping of gold potential, Baguio District, Philippines. Natural Resources Research, 9, 237–253.CrossRefGoogle Scholar
  17. Carranza, E. J. M., & Hale, M. (2001a). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio District, Philippines. Natural Resources Research, 10, 125–136.CrossRefGoogle Scholar
  18. Carranza, E. J. M., & Hale, M. (2002a). Where are porphyry copper deposits spatially localized? A case study in Benguet Province, Philippines. Natural Resources Research, 11, 45–59.CrossRefGoogle Scholar
  19. Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using Random Forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.CrossRefGoogle Scholar
  20. Carranza, E. J. M., Mangaoang, J. C., & Hale, M. (1999). Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research, 8, 165–173.CrossRefGoogle Scholar
  21. Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia. Natural Resources Research, 14, 47–63.CrossRefGoogle Scholar
  22. Chen, J., Wang, G., & Hou, C. (2005). Quantitative prediction and evaluation of mineral resources based on GIS: A case study in Sanjiang region, southwestern China. Natural Resources Research, 15, 285–294.Google Scholar
  23. Chen, Y., Zhao, P., Chen, J., & Liu, J. (2001). Application of the geo-anomaly unit concept in quantitative delineation and assessment of gold ore targets in western Shandong uplift terrain, Eastern China. Natural Resources Research, 10, 35–49.CrossRefGoogle Scholar
  24. Cheng, Q. (1996). Asymmetric fuzzy relation analysis method for ranking geoscience variables. Nonrenewable Resources, 5, 169–180.CrossRefGoogle Scholar
  25. Cheng, Q., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8, 27–35.CrossRefGoogle Scholar
  26. Cheng, Q., Agterberg, F. P., & Bonham-Carter, G. F. (1996). Fractal pattern integration for mineral potential estimation. Nonrenewable Resources, 5, 117–130.CrossRefGoogle Scholar
  27. Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9, 43–52.CrossRefGoogle Scholar
  28. Chung, C. J., & Fabbri, A. G. (1993). The representation of geoscience information for data integration. Nonrenewable Resources, 2, 122–139.CrossRefGoogle Scholar
  29. Costa, J. F., & Koppe, J. C. (1999). Assessing uncertainty associated with the delineation of geochemical anomalies. Natural Resources Research, 8, 59–67.CrossRefGoogle Scholar
  30. Daneshfar, B., Desrochers, A., & Budkewitsch, P. (2006). Mineral-potential mapping for MVT deposits with limited data sets using Landsat data and geological evidence in the Borden Basin, Northern Baffin Island, Nunavut, Canada. Natural Resources Research, 15, 129–149.CrossRefGoogle Scholar
  31. De Araújo, C. C., & Macedo, A. B. (2002). Multicriteria geologic data analysis for mineral favorability mapping: Application to a metal sulphide mineralized area, Ribeira Valley Metallogenic Province, Brazil. Natural Resources Research, 11, 29–43.CrossRefGoogle Scholar
  32. Deng, M. (2009). A conditional dependence adjusted weights of evidence model. Natural Resources Research, 18, 249–258.CrossRefGoogle Scholar
  33. De Quadros, T. F. P., Koppe, J. C., Strieder, A. J., & Costa, J. F. C. L. (2006). Mineral-potential mapping: A comparison of weights-of-evidence and fuzzy methods. Natural Resources Research, 15, 49–65.CrossRefGoogle Scholar
  34. Duarte Campos, L., Machado de Souza, S., Alves de Sordi, D., Tavares, F. M., Klein, E. L., & Dos Santos Lopes, E. C. (2017). Predictive mapping of prospectivity in the Gurupi Orogenic Gold Belt, north–northeast Brazil: An example of district-scale mineral system approach to exploration targeting. Natural Resources Research. doi: 10.1007/s11053-016-9320-5.Google Scholar
  35. Elliott, B. A., Verma, R., & Kyle, J. R. (2016). Prospectivity modeling for Cambrian-Ordovician hydraulic fracturing sand resources around the Llano Uplift, Central Texas. Natural Resources Research, 25, 389–415.CrossRefGoogle Scholar
  36. El-Makky, A. M., & Sediek, K. N. (2012). Stream sediments geochemical exploration in the northwestern part of Wadi Allaqi Area, South Eastern Desert, Egypt. Natural Resources Research, 21, 95–115.CrossRefGoogle Scholar
  37. Fabbri, A., & Chung, C. J. (2008). On blind tests and spatial prediction models. Natural Resources Research, 17, 107–118.CrossRefGoogle Scholar
  38. Feizi, F., Karbalaei-Ramezanali, A., & Tusi, H. (2017). Mineral potential mapping via TOPSIS with hybrid AHP-Shannon entropy weighting of evidence: A case study for porphyry-Cu, Farmahin area, Markazi Province, Iran. Natural Resources Research. doi: 10.1007/s11053-017-9338-3.Google Scholar
  39. Ford, A., Miller, J. M., & Mol, A. G. (2016). A comparative analysis of weights of evidence, evidential belief functions, and fuzzy logic for mineral potential mapping using incomplete data at the scale of investigation. Natural Resources Research, 25, 19–33.CrossRefGoogle Scholar
  40. Geranian, H., Tabatabaei, S. H., Asadi, H. H., & Carranza, E. J. M. (2016). Application of discriminant analysis and support vector machine in mapping gold potential areas for further drilling in the Sari-Gunay gold deposit, NW Iran. Natural Resources Research, 25, 145–159.CrossRefGoogle Scholar
  41. Goossens, M. A. (1993). Integrated analysis of Landsat TM, airborne magnetic, and radiometric data, as an exploration tool for granite-related mineralization, Salamanca province, Western Spain. Nonrenewable Resources, 2, 14–30.CrossRefGoogle Scholar
  42. Hariharan, S., Tirodkar, S., Porwal, A., Bhattacharya, A., & Joly, A. (2017). Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: An example from the Tanami Region, Western Australia. Natural Resources Research. doi: 10.1007/s11053-017-9335-6.Google Scholar
  43. Harris, D., & Pan, G. (1999). Mineral favorability mapping: A comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8, 93–109.CrossRefGoogle Scholar
  44. Harris, D., Zurcher, L., Stanley, M., Marlow, J., & Pan, G. (2003). A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Natural Resources Research, 12, 241–255.CrossRefGoogle Scholar
  45. Harris, J. R., Lemkow, D., Jefferson, C., Wright, D., & Falck, H. (2008). Mineral potential modelling for the greater Nahanni ecosystem using GIS based analytical methods. Natural Resources Research, 17, 51–78.CrossRefGoogle Scholar
  46. Harris, J. R., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M. A., Ayer, J., et al. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—A case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10, 91–124.CrossRefGoogle Scholar
  47. He, J., Yao, S., Zhang, Z., & You, G. (2013). Complexity and productivity differentiation models of metallogenic indicator elements in rocks and supergene media around Daijiazhuang Pb–Zn deposit in Dangchang County, Gansu Province. Natural Resources Research, 22, 19–36.CrossRefGoogle Scholar
  48. Lusty, P. A. J., Scheib, C., Gunn, A. G., & Walker, A. S. D. (2012). Reconnaissance-scale prospectivity analysis for gold mineralisation in the Southern Uplands-Down-Longford Terrane, Northern Ireland. Natural Resources Research, 21, 359–382.CrossRefGoogle Scholar
  49. Luz, F., Mateus, A., Matos, J. X., & Gonçalves, M. A. (2014). Cu- and Zn-soil anomalies in the NE border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research, 23, 195–215.CrossRefGoogle Scholar
  50. McKay, G., & Harris, J. R. (2016). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25, 125–143.CrossRefGoogle Scholar
  51. McLaren, G. P. (1992). Classifying mineral potential in support of land-use policy decisions in British Columbia, Canada. Nonrenewable Resources, 1, 85–96.CrossRefGoogle Scholar
  52. Mejía-Herrera, P., Royer, J. J., Caumon, G., & Cheilletz, A. (2015). Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials. Natural Resources Research, 24, 275–290.CrossRefGoogle Scholar
  53. Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Natural Resources Research, 10, 209–226.CrossRefGoogle Scholar
  54. Mutele, L., Billay, A., & Hunt, J. P. (2017). Knowledge-driven prospectivity mapping for granite-related polymetallic Sn–F–(REE) mineralization, Bushveld Igneous Complex, South Africa. Natural Resources Research. doi: 10.1007/s11053-017-9325-8.Google Scholar
  55. Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17, 29–48.CrossRefGoogle Scholar
  56. Nykänen, V., Niiranen, T., Molnár, F., Lahti, I., Korhonen, K., Cook, N., et al. (2017). Optimizing a knowledge-driven prospectivity model for gold deposits within Peräpohja Belt, northern Finland. Natural Resources Research. doi: 10.1007/s11053-016-9321-4.Google Scholar
  57. Nykänen, V., & Ojala, V. J. (2007). Spatial analysis techniques as successful mineral-potential mapping tools for orogenic gold deposits in the Northern Fennoscandian Shield, Finland. Natural Resources Research, 16, 85–92.CrossRefGoogle Scholar
  58. Nykänen, V., & Raines, G. L. (2006). Quantitative analysis of scale of aeromagnetic data raises questions about geologic-map scale. Natural Resources Research, 15, 213–222.CrossRefGoogle Scholar
  59. Oh, H. J., & Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea. Natural Resources Research, 19, 103–124.CrossRefGoogle Scholar
  60. Paganelli, F., Richards, J. P., & Grunsky, E. C. (2002). Integration of structural, gravity, and magnetic data using the weights of evidence method as a tool for kimberlite exploration in the Buffalo Head Hills, Northern Central Alberta, Canada. Natural Resources Research, 11, 219–236.CrossRefGoogle Scholar
  61. Pan, G. (1993a). Indicator favorability theory for mineral potential mapping. Nonrenewable Resources, 2, 292–311.CrossRefGoogle Scholar
  62. Pan, G., & Porterfield, B. (1995). Large-scale mineral potential estimation for blind precious metal ore bodies. Nonrenewable Resources, 4, 187–207.CrossRefGoogle Scholar
  63. Parsa, M., Maghsoudi, A., Carranza, E. J. M., & Yousefi, M. (2017). Enhancement and mapping of weak multivariate stream sediment geochemical anomalies in Ahar area, NW Iran. Natural Resources Research. Google Scholar
  64. Pazand, K., Hezarkhani, A., Ataei, M., & Ghanbari, Y. (2011). Combining AHP with GIS for predictive Cu porphyry potential mapping: A case study in Ahar Area (NW, Iran). Natural Resources Research, 20, 251–262.CrossRefGoogle Scholar
  65. Porwal, A., Carranza, E. J. M., & Hale, M. (2003a). Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, Western India. Natural Resources Research, 12, 155–171.CrossRefGoogle Scholar
  66. Porwal, A., Carranza, E. J. M., & Hale, M. (2003b). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12, 1–25.CrossRefGoogle Scholar
  67. Porwal, A., Carranza, E. J. M., & Hale, M. (2006a). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15, 1–14.CrossRefGoogle Scholar
  68. Raines, G. L. (1999). Evaluation of weights of evidence to predict epithermal-gold deposits in the Great Basin of the Western United States. Natural Resources Research, 8, 257–276.CrossRefGoogle Scholar
  69. Raines, G. L., Connors, K. A., & Chorlton, L. B. (2007). Porphyry copper deposit tract definition—A global analysis comparing geologic map scales. Natural Resources Research, 16, 191–198.CrossRefGoogle Scholar
  70. Raines, G. L., & Mihalasky, M. J. (2002). A reconnaissance method for delineation of tracts for regional-scale mineral-resource assessment based on geologic-map data. Natural Resources Research, 11, 241–248.CrossRefGoogle Scholar
  71. Reddy, R. K. T., Bonham-Carter, G. F., & Galley, A. G. (1992). Developing a geographic expert system for regional mapping of volcanogenic massive sulfide (VMS) deposit potential. Nonrenewable Resources, 1, 112–124.CrossRefGoogle Scholar
  72. Rehder, S. (1994). Experiences with an expert system for gold exploration in Botswana. Nonrenewable Resources, 3, 123–131.CrossRefGoogle Scholar
  73. Rostirolla, S. P., Soares, P. C., & Chang, H. K. (1998). Bayesian and multivariate methods applied to favorability quantification in Recôncavo Basin and Ribeira Belt, Brazil. Nonrenewable Resources, 7, 7–24.CrossRefGoogle Scholar
  74. Sahoo, N. R., & Pandalai, H. S. (1999). Integration of sparse geologic information in gold targeting using logistic regression analysis in the Hutti-Maski Schist Belt, Raichur, Karnataka, India—A case study. Natural Resources Research, 8, 233–250.CrossRefGoogle Scholar
  75. Scott, M., & Dimitrakopoulos, R. (2001). Quantitative analysis of mineral resources for strategic planning: implications for Australian geological surveys. Natural Resources Research, 10, 159–177.CrossRefGoogle Scholar
  76. Singer, D. A. (1993). Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Nonrenewable Resources, 2, 69–81.CrossRefGoogle Scholar
  77. Singer, D. A., & Kouda, R. (1999). A comparison of the weights-of-evidence method and probabilistic neural networks. Natural Resources Research, 8, 287–298.CrossRefGoogle Scholar
  78. Singer, D. A., & Kouda, R. (2001). Some simple guides to finding useful information in exploration geochemical data. Natural Resources Research, 10, 137–147.CrossRefGoogle Scholar
  79. Skabar, A. A. (2005). Mapping mineralization probabilities using multilayer perceptrons. Natural Resources Research, 14, 109–123.CrossRefGoogle Scholar
  80. Skabar, A. A. (2011). Mineral prospectivity prediction from high-dimensional geoscientific data using a similarity-based density estimation model. Natural Resources Research, 20, 143–155.CrossRefGoogle Scholar
  81. Tessema, A. (2017). Mineral systems analysis and artificial neural network modeling of chromite prospectivity in the Western Limb of the Bushveld Complex, South Africa. Natural Resources Research. doi: 10.1007/s11053-017-9344-5.Google Scholar
  82. Twarakavi, N. K. C., Misra, D., & Bandopadhyay, S. (2006). Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data. Natural Resources Research, 15, 15–26.CrossRefGoogle Scholar
  83. Venkataraman, G., Babu Madhavan, B., Ratha, D. S., Antony, J. P., Goyal, R. S., Banglani, S., et al. (2000). Spatial modeling for base-metal mineral exploration through integration of geological data sets. Natural Resources Research, 9, 27–42.CrossRefGoogle Scholar
  84. Yousefi, M. (2017). Analysis of zoning pattern of geochemical indicators for targeting of porphyry-Cu mineralization: A pixel-based mapping approach. Natural Resources Research. doi: 10.1007/s11053-017-9334-7.Google Scholar
  85. Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3–18.CrossRefGoogle Scholar
  86. Zuo, R. (2017). Machine learning of mineralization-related geochemical anomalies: A review of potential methods. Natural Resources Research. doi: 10.1007/s11053-017-9345-4.Google Scholar

From other sources

  1. Abedi, M., Kashani, S. B. M., Norouzi, G. H., & Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127–146.CrossRefGoogle Scholar
  2. Abedi, M., Mohammadi, R., Norouzi, G. H., & Mohammadi, M. S. M. (2016). A comprehensive VIKOR method for integration of various exploratory data in mineral potential mapping. Arabian Journal of Geosciences, 9, 1–21.CrossRefGoogle Scholar
  3. Abedi, M., & Norouzi, G. H. (2012). Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration. Journal of Applied Geophysics, 83, 35–45.CrossRefGoogle Scholar
  4. Abedi, M., Norouzi, G. H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283.CrossRefGoogle Scholar
  5. Abedi, M., Norouzi, G. H., & Fathianpour, N. (2013). Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556–567.CrossRefGoogle Scholar
  6. Abedi, M., Norouzi, G. H., & Fathianpour, N. (2015). Mineral potential mapping in Central Iran using fuzzy ordered weighted averaging method. Geophysical Prospecting, 63, 461–477.CrossRefGoogle Scholar
  7. Agterberg, F. P. (1988). Application of recent developments of regression analysis in regional mineral resource evaluation. In C. F. Chung, A. G. Fabbri, & R. Sinding-Larsen (Eds.), Quantitative analysis of mineral and energy resources (pp. 1–28). Dordrecht: D. Reidel Publishing Company.Google Scholar
  8. Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In G. Gaál & D. F. Merriam (Eds.), Computer applications in resource estimation (pp. 1–21). Oxford: Pergamon Press.Google Scholar
  9. Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q., & Wright, D. F. (1993). Weights of evidence modeling and weighted logistic regression in mineral potential mapping. In J. C. Davis & U. C. Herzfeld (Eds.), Computers in geology (pp. 13–32). New York: Oxford University Press.Google Scholar
  10. Aitchison, J. (1984). The statistical analysis of geochemical compositions. Mathematical Geology, 16, 531–564.CrossRefGoogle Scholar
  11. Alaei Moghadam, S., Karimi, M., & Sadi Mesgari, M. (2015). Application of a fuzzy inference system to mapping prospectivity for the Chahfiroozeh copper deposit, Kerman, Iran. Journal of Spatial Science, 60, 233–255.CrossRefGoogle Scholar
  12. An, P., Moon, W. M., & Bonham-Carter, G. F. (1992). On knowledge-based approach on integrating remote sensing, geophysical and geological information. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), 1992, 34–38.CrossRefGoogle Scholar
  13. An, P., Moon, W. M., & Rencz, A. (1991). Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Canadian Journal of Exploration Geophysics, 27, 1–11.Google Scholar
  14. Andrada de Palomera, P., van Ruitenbeek, F. J. A., & Carranza, E. J. M. (2015). Prospectivity for epithermal gold-silver deposits in the Deseado Massif, Argentina. Ore Geology Reviews, 71, 484–501.CrossRefGoogle Scholar
  15. Asadi, H. H., & Hale, M. (2001). A predictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran. Computers & Geosciences, 27, 901–912.CrossRefGoogle Scholar
  16. Asadi, H. H., Porwal, A., Fatehi, M., Kianpouryan, S., & Lu, Y. (2015). Exploration feature selection applied to hybrid data integration modeling: Targeting copper–gold potential in central Iran. Ore Geology Reviews, 71, 819–838.CrossRefGoogle Scholar
  17. Austin, J. R., & Blenkinsop, T. G. (2009). Local to regional scale structural controls on mineralisation and the importance of a major lineament in the eastern Mount Isa Inlier, Australia: Review and analysis with autocorrelation and weights of evidence. Ore Geology Reviews, 35, 298–316.CrossRefGoogle Scholar
  18. Barnes, R. G., Jaireth, S., Miezitis, Y., & Suppel, D. (1999). Mineral potential assessment of parts of the southern New England Orogen. In P. G. Flood (Ed.), New England Orogen, proceedings of the NEO ‘99 conference, 1–3 February 1999. University of New England, Armidale (pp. 373–382).Google Scholar
  19. Barros de Andrade, L., Moreira Silva, A., & De Souza Filho, C. R. (2014). Nickel prospective modelling using fuzzy logic on Nova Brasilândia metasedimentary belt, Rondônia, Brazil. Revista Brasileira de Geofísica, 32, 419–431.CrossRefGoogle Scholar
  20. Billa, M., Cassard, D., Lips, A. L. W., Bouchot, V., Tourliére, B., Stein, G., et al. (2004). Predicting gold-rich epithermal and porphyry systems in the central Andes with a continental-scale metallogenic GIS. Ore Geology Reviews, 25, 39–67.CrossRefGoogle Scholar
  21. Bonham-Carter, G. F. (1991). Integration of geoscientific data using GIS. In D. J. Maguire, M. F. Goodchild, & D. W. Rhind (Eds.), Geographic information systems: Principles and applications (Vol. 2, pp. 171–184). London: Longman.Google Scholar
  22. Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS (p. 416p). Ontario: Pergamon.Google Scholar
  23. Bonham-Carter, G. F., & Agterberg, F. P. (1990). Application of a microcomputer-based geographic information system to mineral-potential mapping. In J. T. Hanley & D. F. Merriam (Eds.), Microcomputer applications in geology, II (pp. 49–74). New York: Pergamon Press.CrossRefGoogle Scholar
  24. Bonham-Carter, G. F., & Agterberg, F. P. (1999). Arc-WofE: A GIS tool for statistical integration of mineral exploration datasets. In Proceedings of the 52nd session of the International Statistical Institute, Helsinki, August 10–18, 1999.
  25. Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1988). Integration of geological datasets for gold exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing, 54, 1585–1592.Google Scholar
  26. Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights of evidence modelling: A new approach to mapping mineral potential. In F. P. Agterberg & G .F. Bonham-Carter (Eds.), Statistical applications in the earth sciences. Geological Survey of Canada, Paper 89-9 (pp. 171–183).Google Scholar
  27. Bonham-Carter, G. F., & Chung, C. F. (1983). Integration of mineral resource data for Kasmere Lake area, Northwest Manitoba, with emphasis on uranium. Mathematical Geology, 15, 25–45.CrossRefGoogle Scholar
  28. Botbol, J. M., Sinding-Larsen, R., McCammon, R. B., & Gott, G. B. (1977). Weighted characteristics analysis of spatially dependent mineral deposit data. Mathematical Geology, 9, 309–311.CrossRefGoogle Scholar
  29. Botbol, J. M., Sinding-Larsen, R., McCammon, R. B., & Gott, G. B. (1978). A regionalized multivariate approach to target area selection in geochemical exploration. Economic Geology, 73, 534–546.CrossRefGoogle Scholar
  30. Brown, W., Gedeon, T., & Barnes, R. (1999). The use of a multilayer feedforward neural network for mineral prospectivity mapping. In T. Gedeon, P. Wong, S. Halgamuge, N. Kasabov, D. Nauck, & K. Fukushima (Eds.), ICONIP ‘99: ANZIIS’99 & ANNES’99 & ACNN’99: Proceedings of the 6th international conference on neural information processing (Vol. 1, pp. 160–165), IEEE, Piscataway, U.S.A, Perth edn.Google Scholar
  31. Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47, 757–770.CrossRefGoogle Scholar
  32. Butt, C. R. M., & Zeegers, H. (Eds.). (1992). Regolith exploration geochemistry in tropical and subtropical terrains. Handbook of exploration geochemistry (Vol. 4). Amsterdam: Elsevier.Google Scholar
  33. Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry (Vol. 11). Amsterdam: Elsevier.Google Scholar
  34. Carranza, E. J. M. (2009a). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35, 383–400.CrossRefGoogle Scholar
  35. Carranza, E. J. M. (2009b). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & Geosciences, 35, 2032–2046.CrossRefGoogle Scholar
  36. Carranza, E. J. M. (2011). From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resource Geology, 61, 30–51.CrossRefGoogle Scholar
  37. Carranza, E. J. M., & Hale, M. (2001b). Logistic regression for geologically-constrained mapping of gold mineralization potential, Baguio district, Philippines. Exploration and Mining Geology Journal, 10, 165–175.CrossRefGoogle Scholar
  38. Carranza, E. J. M., & Hale, M. (2002b). Spatial association of mineral occurrences and curvilinear geological features. Mathematical Geology, 34, 203–221.CrossRefGoogle Scholar
  39. Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22, 117–132.CrossRefGoogle Scholar
  40. Carranza, E. J. M., Hale, M., & Faassen, C. (2008a). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33, 536–558.CrossRefGoogle Scholar
  41. Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.CrossRefGoogle Scholar
  42. Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.CrossRefGoogle Scholar
  43. Carranza, E. J. M., Owusu, E., & Hale, M. (2009). Mapping of prospectivity and estimation of number of undiscovered prospects for lode gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita, 44, 915–938.CrossRefGoogle Scholar
  44. Carranza, E. J. M., & Sadeghi, M. (2010). Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geology Reviews, 38, 219–241.CrossRefGoogle Scholar
  45. Carranza, E. J. M., Sadeghi, M., & Billay, A. (2015). Predictive mapping of prospectivity for orogenic gold, Giyani greenstone belt (South Africa). Ore Geology Reviews, 71, 703–718.CrossRefGoogle Scholar
  46. Carranza, E. J. M., Van Ruitenbeek, F. J. A., Hecker, C., Van der Meijde, M., & Van der Meer, F. D. (2008b). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10, 374–387.CrossRefGoogle Scholar
  47. Carranza, E. J. M., Wibowo, H., Barritt, S. D., & Sumintadireja, P. (2008c). Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia. Geothermics, 33, 267–299.CrossRefGoogle Scholar
  48. Cassard, D., Billa, M., Lambert, A., Picot, J. C., Husson, Y., Lasserre, J. L., et al. (2008). Gold predictivity mapping in French Guiana using an expert-guided data-driven approach based on a regional-scale GIS. Ore Geology Reviews, 34, 471–500.CrossRefGoogle Scholar
  49. Chen, C., Dai, H., Liu, Y., & He, B. (2011). Mineral prospectivity mapping integrating multi-source geology spatial data sets and logistic regression modelling. In Proceedings of the 2011 IEEE international conference on spatial data mining and geographic knowledge series (ICSDM), 29 June–01 July 2011, Fuzhou, China (pp. 214–217).Google Scholar
  50. Chen, C., He, B., & Zeng, Z. (2014). A method for mineral prospectivity mapping integrating C4. 5 decision tree, weights-of-evidence and m-branch smoothing techniques: a case study in the eastern Kunlun Mountains, China. Earth Science Informatics, 7, 13–24.CrossRefGoogle Scholar
  51. Chen, Y. (2004). MRPM: Three visual basic programs for mineral resource potential mapping. Computers & Geosciences, 30, 969–983.CrossRefGoogle Scholar
  52. Chen, Y., & Zhao, P. (1998). Zonation in primary halos and geochemical prospecting pattern for the Guilaizhuang gold deposit, eastern China. Nonrenewable Resources, 7, 37–44.CrossRefGoogle Scholar
  53. Cheng, Q., Agterberg, F. P., & Bonham-Carter, G. F. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109–130.CrossRefGoogle Scholar
  54. Chica-Olmo, M., Abarca, F., & Rigol, J. P. (2002). Development of a decision support system based on remote sensing and GIS techniques for gold-rich area identification in SE Spain. International Journal of Remote Sensing, 23, 4801–4814.CrossRefGoogle Scholar
  55. Choi, S., Moon, W. M., & Choi, S. G. (2000). Fuzzy logic fusion of W-Mo exploration data from Seobyeog-ri, Korea. Geosciences Journal, 4, 43–52.CrossRefGoogle Scholar
  56. Chung, C. F. (1977). An application of discriminant analysis for the evaluation of mineral potential. In R. V. Ramani (Ed.), Application of computer methods in the mineral industry, proceedings of the 14th APCOM symposium. Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, New York (pp. 299–311).Google Scholar
  57. Chung, C. F. (1978). Computer program for the logistic model to estimate the probability of occurrence of discrete events. Geological Survey of Canada Paper, 78–12, 23p.Google Scholar
  58. Chung, C. F. (1983). SIMSAG: Integrated computer system for use in evaluation of mineral and energy resources. Mathematical Geology, 15, 47–58.CrossRefGoogle Scholar
  59. Chung, C. F. (2003). Use of airborne geophysical surveys for constructing mineral potential maps. In W. D. Goodfellow, S. R. McCutcheon, & J. M. Peter (Eds.), Massive sulfide deposits of the Bathurst mining camp, New Brunswick, and Northern Maine Economic Geology Monograph (Vol. 11, pp. 879–891). Colorado: Society of Economic Geologists.Google Scholar
  60. Chung, C. F., & Agterberg, F. P. (1980). Regression models for estimating mineral resources from geological map data. Mathematical Geology, 12, 472–488.Google Scholar
  61. Chung, C. F., & Agterberg, F. P. (1988). Poisson regression analysis and its application. In C. F. Chung, A. G. Fabbri, & R. Sinding-Larsen (Eds.), Quantitative analysis of mineral and energy resources (pp. 29–36). Dordrecht: D. Reidel Publishing Company.CrossRefGoogle Scholar
  62. Chung, C. F., Fabbri, A. G., & Chi, K. H. (2002). A strategy for sustainable development of nonrenewable resources using spatial prediction models. In A. G. Fabbri, G. Gáal, & R. B. McCammon (Eds.), Geoenvironmental deposit models for resource exploitation and environmental security (pp. 101–118). Dordrecht: Kluwer.CrossRefGoogle Scholar
  63. Chung, C. F., & Keating, P. B. (2002). Mineral potential evaluation based on airborne geophysical data. Exploration Geophysics, 33, 28–34.CrossRefGoogle Scholar
  64. Chung, C. F., & Moon, W. M. (1991). Combination rules of spatial geoscience data for mineral exploration. Geoinformatics, 2, 159–169.CrossRefGoogle Scholar
  65. Cooper, D. C., Rollin, K. E., Colman, T. B., Davies, J. R., & Wilson, D. (2000). Potential for mesothermal gold and VMS Deposits in the Lower Palaeozoic Welsh Basin. BGS Research Report, RR/00/09. DTI Minerals Programme Publication No. 4. British Geological Suvery, Keyworth.Google Scholar
  66. Costa e Silva, E., Silva, A. M., Bemfica Toldeo, C. I., Mol, A. G., Otterman, D. W., & Cortez de Souza, S. R. (2012). Mineral potential mapping for orogenic gold deposits in the Rio Maria granite greenstone terrane, Southeastern Pará State, Brazil. Economic Geology, 107, 1387–1402.CrossRefGoogle Scholar
  67. Cox, D. P., & Singer, D. A. (Eds.) (1986). Mineral deposit models. U.S. Geological Survey Bulletin 1693, United States Government Printing Office, Washington.Google Scholar
  68. Debba, P., Carranza, E. J. M., Stein, A., & Van der Meer, F. D. (2009). Deriving optimal exploration target zones on mineral prospectivity maps. Mathematical Geosciences, 41, 421–446.CrossRefGoogle Scholar
  69. D’Ercole, C., Groves, D. I., & Knox-Robinson, C. M. (2000). Using fuzzy logic in a Geographic Information System environment to enhance conceptually based prospectivity analysis of Mississippi Valley-type mineralisation. Australian Journal of Earth Sciences, 47, 913–927.CrossRefGoogle Scholar
  70. Du, X., Zhou, K., Cui, Y., Wang, J., Zhang, N., & Sun, W. (2016). Application of fuzzy Analytical Hierarchy Process (AHP) and Prediction-Area (PA) plot for mineral prospectivity mapping: A case study from the Dananhu metallogenic belt, Xinjiang, NW China. Arabian Journal of Geosciences, 9, 1–15.CrossRefGoogle Scholar
  71. Eddy, B. G., Bonham-Carter, G. F., & Jefferson, C. W. (2006). Mineral potential analyzed and mapped at multiple scales—a modified fuzzy logic method using digital geology. In J. R. Harris (Ed.), GIS for the earth sciences, Geological Association of Canada Special Publication 44 (pp. 143–162). St. John’s: Geological Association of Canada.Google Scholar
  72. Fallon, M., Porwal, A., & Guj, P. (2010). Prospectivity analysis of the Plutonic Marymia Greenstone Belt, Western Australia. Ore Geology Reviews, 38, 208–218.CrossRefGoogle Scholar
  73. Farzamian, M., Rouhani, A. K., Yarmohammadi, A., Shahi, H., Sabokbar, H. F., & Ziaiie, M. (2016). A weighted fuzzy aggregation GIS model in the integration of geophysical data with geochemical and geological data for Pb–Zn exploration in Takab area, NW Iran. Arabian Journal of Geosciences, 9, 1–17.CrossRefGoogle Scholar
  74. Feltrin, L. (2008). Predictive modelling of prospectivity for Pb–Zn deposits in the Lawn Hill Region, Queensland, Australia. Ore Geology Reviews, 34, 399–427.CrossRefGoogle Scholar
  75. Filzmoser, P., Hron, K., & Reimann, C. (2009a). Principal components analysis for compositional data with outliers. Environmetrics, 20, 621–632.CrossRefGoogle Scholar
  76. Filzmoser, P., Hron, K., & Reimann, C. (2009b). Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Science of the Total Environment, 407, 6100–6108.CrossRefGoogle Scholar
  77. Filzmoser, P., Hron, K., & Reimann, C. (2010). The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment, 408, 4230–4238.CrossRefGoogle Scholar
  78. Ford, A., & Blenkinsop, T. G. (2008). Combining fractal analysis of mineral deposit clustering with weights of evidence to evaluate patterns of mineralization: application to copper deposits of the Mount Isa Inlier, NW Queensland, Australia. Ore Geology Reviews, 33, 435–450.CrossRefGoogle Scholar
  79. Ford, A., Hagemann, S. G., Fogliata, A. S., Miller, J. M., Mol, A., & Doyle, P. J. (2015). Porphyry, epithermal, and orogenic gold prospectivity of Argentina. Ore Geology Reviews, 71, 655–672.CrossRefGoogle Scholar
  80. Ford, A., & Hart, C. J. (2013). Mineral potential mapping in frontier regions: A Mongolian case study. Ore Geology Reviews, 51, 15–26.CrossRefGoogle Scholar
  81. Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.CrossRefGoogle Scholar
  82. Gettings, M.E., & Bultman, M. W. (1993). Quantifying favorableness for occurrence of a mineral deposit type using fuzzy logic—An example from Arizona. U.S. Geol. Survey Open-File Report 93-392.Google Scholar
  83. Ghanbari, Y., Hezarkhani, A., Ataei, M., & Pazand, K. (2012). Mineral potential mapping with fuzzy models in the Kerman-Kashmar Tectonic Zone, Central Iran. Applied Geomatics, 4, 173–186.CrossRefGoogle Scholar
  84. González-Álvarez, I., Porwal, A., McCuaig, T. C., & Maier, W. D. (2010). Hydrothermal Ni prospectivity analysis of Tasmania, Australia. Ore Geology Reviews, 38, 168–183.CrossRefGoogle Scholar
  85. Govett, G. J. S. (1983). Rock geochemistry in mineral exploration. Handbook of exploration geochemistry (Vol. 3). Amsterdam: Elsevier.Google Scholar
  86. Groves, D. I., Goldfarb, R. J., Knox-Robinson, C. M., Ojala, J., Gardoll, S., Yun, G. Y., et al. (2000). Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia. Ore Geology Reviews, 17, 1–38.CrossRefGoogle Scholar
  87. Hale, M. (Ed.). (2000). Geochemical remote sensing of the sub-surface. Handbook of exploration geochemistry (Vol. 7). Amsterdam: Elsevier.Google Scholar
  88. Hale, M., & Plant, J. (Eds.). (1994). Drainage geochemistry. Handbook of exploration geochemistry (Vol. 6). Amsterdam: Elsevier.Google Scholar
  89. Harris, D. P. (1984). Mineral resources appraisal—Mineral endowment, resources, and potential supply—Concept, methods, and cases (p. 445p). New York: Oxford University Press.Google Scholar
  90. Harris, D. P., & Pan, G. (1991). Consistent geological areas for epithermal gold-silver deposits in the Walker Lake quadrangle of Nevada and California delineated by quantitative methods. Economic Geology, 86, 142–165.CrossRefGoogle Scholar
  91. Harris, J. R., Grunsky, E., Behnia, P., & Corrigan, D. (2015). Data- and knowledge-driven mineral prospectivity maps for Canada’s North. Ore Geology Reviews, 71(788), 803.Google Scholar
  92. Harris, J. R., & Sanborn-Barrie, M. (2006). Mineral potential mapping: examples from the Red Lake Greenstone Belt, Northwest Ontario. In J. R. Harris (Ed.), GIS for the earth sciences, Geological Association of Canada Special Publication 44 (pp. 1–21). St. John’s: Geological Association of Canada.Google Scholar
  93. Harris, J. R., Sanborn-Barrie, M., Panagapko, D. A., Skulski, T., & Parker, J. R. (2006). Gold prospectivity maps of the Red Lake greenstone belt: Application of GIS technology. Canadian Journal of Earth Sciences, 43, 865–893.CrossRefGoogle Scholar
  94. Herbert, S., Woldai, T., Carranza, E. J. M., & Van Ruitenbeek, F. J. A. (2014). Predictive mapping of prospectivity for orogenic gold in Uganda. Journal of African Earth Sciences, 99, 666–693.CrossRefGoogle Scholar
  95. Joly, A., Porwal, A., & McCuaig, T. C. (2012). Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis. Ore Geology Reviews, 48, 349–383.CrossRefGoogle Scholar
  96. Kauranne, L. K., Salminen, R., & Eriksson, K. (Eds.). (1992). Regolith exploration geochemistry in arctic and temperate terrains. Handbook of exploration geochemistry (Vol. 5). Amsterdam: Elsevier.Google Scholar
  97. Knox-Robinson, C. M. (2000). Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia. Australian Journal of Earth Sciences, 47, 929–942.CrossRefGoogle Scholar
  98. Levinson, A. A. (1974). Introduction to exploration geochemistry (p. 612p). Calgary: Applied Publishing Ltd.Google Scholar
  99. Leväniemi, H., Hulkki, H., & Tiainen, M. (2017). SOM guided fuzzy logic prospectivity model for gold in the Häme Belt, southwestern Finland. Journal of African Earth Sciences, 128, 72–83.CrossRefGoogle Scholar
  100. Lindsay, M., Aitken, A., Ford, A., Dentith, M., Hollis, J., & Tyler, I. (2016). Reducing subjectivity in multi-commodity mineral prospectivity analyses: Modelling the west Kimberley, Australia. Ore Geology Reviews, 76, 395–413.CrossRefGoogle Scholar
  101. Lindsay, M. D., Betts, P. G., & Ailleres, L. (2014). Data fusion and porphyry copper prospectivity models, southeastern Arizona. Ore Geology Reviews, 61, 120–140.CrossRefGoogle Scholar
  102. Lisitsin, V. A., González-Álvarez, I., & Porwal, A. (2013). Regional prospectivity analysis for hydrothermal-remobilised nickel mineral systems in western Victoria, Australia. Ore Geology Reviews, 52, 100–112.CrossRefGoogle Scholar
  103. Lisitsin, V. A., Porwal, A., & McCuaig, T. C. (2014). Probabilistic fuzzy logic modeling: quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations. Mathematical Geosciences, 46, 747–769.CrossRefGoogle Scholar
  104. Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2014). Mineral potential mapping for tungsten polymetallic deposits in the Nanling metallogenic belt, South China. Journal of Earth Science, 25, 689–700.CrossRefGoogle Scholar
  105. Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2015). The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China. Frontiers of Earth Science, 9, 342–354.CrossRefGoogle Scholar
  106. Lusty, P. A. J., Gunn, A. G., McDonnell, P. M., Chacksfield, B. C., Cooper, M. R., & Earls, G. (2009). Gold potential of the Dalradian rocks of north-west Northern Ireland: Prospectivity analysis using Tellus data. Applied Earth Science, 118, 162–177.CrossRefGoogle Scholar
  107. Madani, A. A. (2011). Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia. The Egyptian Journal of Remote Sensing and Space Science, 14, 91–97.CrossRefGoogle Scholar
  108. Magalhães, L. A., & Souza Filho, C. R. (2012). Targeting of gold deposits in Amazonian exploration frontiers using knowledge-and data-driven spatial modeling of geophysical, geochemical, and geological data. Surveys In Geophysics, 33, 211–241.CrossRefGoogle Scholar
  109. McCammon, R. B., Botbol, J. M., Sinding-Larsen, R., & Bowen, R. W. (1983). Characteristics analysis-1981: final program and a possible discovery. Mathematical Geology, 15, 59–83.CrossRefGoogle Scholar
  110. McCammon, R. B., Botbol, J. M., Sinding-Larsen, R., & Bowen, R. W. (1984). The New CHARaracteristic ANalysis (NCHARAN) Program. U.S. Geological Survey Bulletin 1621.Google Scholar
  111. McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38, 128–138.CrossRefGoogle Scholar
  112. Moon, W. M. (1990). Integration of geophysical and geological data using evidential belief function. IEEE Transactions on Geoscience and Remote Sensing, 28, 711–720.CrossRefGoogle Scholar
  113. Moon, W. M. (1993). On mathematical representation and integration of multiple geoscience data sets. Canadian Journal of Remote Sensing, 19, 663–667.CrossRefGoogle Scholar
  114. Moon, W. M., Chung, C. F., & An, P. (1991). Representation and integration of geological, geophysical and remote sensing data. Geoinformatics, 2, 177–188.CrossRefGoogle Scholar
  115. Moradi, M., Basiri, S., Kananian, A., & Kabiri, K. (2015). Fuzzy logic modeling for hydrothermal gold mineralization mapping using geochemical, geological, ASTER imageries and other geo-data, a case study in Central Alborz, Iran. Earth Science Informatics, 8, 197–205.CrossRefGoogle Scholar
  116. Moreira, F. R. S., Almeida-Filho, R., & Câmara, F. (2002). Spatial analysis techniques applied to mineral prospecting: An evaluation in the Poços de Caldas Plateau. Revista Brasileira de Geosciêcias, 33(2-Supplement), 183–190.Google Scholar
  117. Mostafavi Kashani, S. B., Abedi, M., & Norouzi, G. H. (2016). Fuzzy logic mineral potential mapping for copper exploration using multi-disciplinary geo-datasets, a case study in seridune deposit, Iran. Earth Science Informatics, 9, 167–181.CrossRefGoogle Scholar
  118. Naghadehi, K. M., Hezarkhani, A., Honarpazhouh, J., & Shabani, K. S. (2014). Integration multisource data for mineral exploration by using fuzzy logic, case study: Taknar deposit, NE of Iran. Arabian Journal of Geosciences, 7, 3227–3241.CrossRefGoogle Scholar
  119. Najafi, A., Karimpour, M. H., & Ghaden, M. (2014). Application of fuzzy AHP method to IOCG prospectivity mapping: A case study in Taherabad prospecting area, eastern Iran. International Journal of Applied Earth Observation and Geoinformation, 33, 142–154.CrossRefGoogle Scholar
  120. Nielsen, S. H. H., Cunningham, F., Hay, R., Partington, G., & Stokes, M. (2015a). 3D prospectivity modelling of orogenic gold in the Marymia Inlier, Western Australia. Ore Geology Reviews, 71, 578–591.CrossRefGoogle Scholar
  121. Nielsen, S. H. H., McKenzie, C., Miller, A., Partington, G., Payne, C., Puccioni, E., et al. (2015b). Chatham Rise nodular phosphate—Modelling the prospectivity of a lag deposit (off-shore New Zealand): A critical tool for use in resource development and deep sea mining. Ore Geology Reviews, 71, 545–557.CrossRefGoogle Scholar
  122. Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., & Gardoll, S. J. (2008a). Reconnaissance scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55, 25–38.CrossRefGoogle Scholar
  123. Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., & Gardoll, S. J. (2008b). Combined conceptual/empirical prospectivity mapping for orogenic gold in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55, 39–59.CrossRefGoogle Scholar
  124. Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.CrossRefGoogle Scholar
  125. Nykänen, V., & Salmirinne, H. (2007). Prospectivity analysis of gold using regional geophysical and geochemical data from the Central Lapland Greenstone Belt, Finland. In: Juhani Ojala, V. (Ed.), Gold in the Central Lapland Greenstone Belt, Finland. Geological Survey of Finland, Special Paper 44, pp. 251–269.Google Scholar
  126. Oh, H.-J., & Lee, S. (2008). Regional probabilistic and statistical mineral potential mapping of gold-silver deposits using GIS in the Gangreung area, Korea. Resource Geology, 58, 171–187.CrossRefGoogle Scholar
  127. Oskouei, M. M., & Soltani, F. (2016). Mapping of potential Cu and Au mineralization using EBF method. Applied Geomatics. doi: 10.1007/s12518-016-0178-3.Google Scholar
  128. Pan, G. C. (1993b). Canonical favourability model for data integration and mineral potential mapping. Computers & Geosciences, 19, 1077–1100.CrossRefGoogle Scholar
  129. Pan, G. C. (1993c). Regionalized favorability theory for information synthesis in mineral exploration. Mathematical Geology, 25, 603–631.CrossRefGoogle Scholar
  130. Pan, G. C., & Harris, D. P. (1992a). Decomposed and weighted characteristic analysis for the quantitative estimation of mineral resources. Mathematical Geology, 24, 807–823.CrossRefGoogle Scholar
  131. Pan, G. C., & Harris, D. P. (1992b). Estimating a favourability equation for the integration of geodata and selection of mineral exploration targets. Mathematical Geology, 24, 177–202.CrossRefGoogle Scholar
  132. Pan, G. C., & Harris, D. P. (2000). Information synthesis for mineral exploration. New York: Oxford University Press Inc.Google Scholar
  133. Partington, G. (2010). Developing models using GIS to assess geological and economic risk: An example from VMS copper gold mineral exploration in Oman. Ore Geology Reviews, 38, 197–207.CrossRefGoogle Scholar
  134. Payne, C. E., Cunningham, F., Peters, K. J., Nielsen, S., Puccioni, E., Wildman, C., et al. (2015). From 2D to 3D: Prospectivity modelling in the Taupo Volcanic Zone, New Zealand. Ore Geology Reviews, 71, 558–577.CrossRefGoogle Scholar
  135. Pazand, K., & Hezarkhani, A. (2015). Porphyry Cu potential area selection using the combine AHP-TOPSIS methods: A case study in Siahrud area (NW, Iran). Earth Science Informatics, 8, 207–220.CrossRefGoogle Scholar
  136. Pazand, K., Hezarkhani, A., & Pazand, K. (2013). Predictive mapping for porphyry copper mineralization: a comparison of knowledge-driven and data-driven fuzzy models in Siahrud area, Azarbaijan province, NW Iran. Applied Geomatics, 5, 215–224.CrossRefGoogle Scholar
  137. Pereira Leite, E., & De Souza Filho, C. R. (2009a). Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geophysical Prospecting, 57, 1049–1065.CrossRefGoogle Scholar
  138. Pereira Leite, E., & De Souza Filho, C. R. (2009b). Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil. Computers & Geosciences, 35, 675–687.CrossRefGoogle Scholar
  139. Porwal, A., & Carranza, E. J. M. (2008). Classifiers for modelling of mineral potential. In O. Pourret, P. Naïm, & B. Marcot (Eds.), Bayesian networks: A practical guide to applications (pp. 149–171). Chichester: Wiley.CrossRefGoogle Scholar
  140. Porwal, A., & Carranza, E. J. M. (2015). Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews, 71, 477–483.CrossRefGoogle Scholar
  141. Porwal, A., Carranza, E. J. M., & Hale, M. (2001). Extended weights-of-evidence modelling for predictive mapping of base metal deposit potential in Aravalli province, western India. Exploration and Mining Geology Journal, 10, 273–287.CrossRefGoogle Scholar
  142. Porwal, A., Carranza, E. J. M., & Hale, M. (2004). A hybrid neuro-fuzzy model for mineral potential mapping. Mathematical Geology, 36, 803–826.CrossRefGoogle Scholar
  143. Porwal, A., Carranza, E. J. M., & Hale, M. (2006b). Bayesian network classifiers for mineral potential mapping. Computers & Geosciences, 32, 1–16.CrossRefGoogle Scholar
  144. Porwal, A., Das, R. D., Chaudhary, B., Gonzalez-Alvarez, I., & Kreuzer, O. (2015). Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia. Ore Geology Reviews, 71, 839–852.CrossRefGoogle Scholar
  145. Porwal, A., González-Álvarez, I., Markwitz, V., McCuaig, T. C., & Mamuse, A. (2010a). Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geology Reviews, 38, 184–196.CrossRefGoogle Scholar
  146. Porwal, A. K., & Kreuzer, O. P. (2010). Introduction to the special issue: Mineral prospectivity analysis and quantitative resource estimation. Ore Geology Reviews, 38, 121–127.CrossRefGoogle Scholar
  147. Porwal, A., & Sides, E. J. (2000). A predictive model for base metal exploration in a GIS environment. International Archives of Photogrammetry and Remote Sensing, XXXIII, 1178–1184.Google Scholar
  148. Porwal, A., Yu, L., & Gessner, K. (2010b). SVM-based base-metal prospectivity modeling of the Aravalli Orogen, northwestern India. Geophysical Research Abstracts, 12 EGU2010-15171.Google Scholar
  149. Prelat, A. E. (1977). Discriminant analysis as a method of predicting mineral occurrence potentials in central Norway. Mathematical Geology, 9, 343–367.CrossRefGoogle Scholar
  150. Ranjbar, H., & Honarmand, M. (2004). Integration and analysis of airborne geophysical and ETM+ data for exploration of porphyry type deposits in the Central Iranian Volcanic Belt using fuzzy classification. International Journal of Remote Sensing, 25, 4729–4741.CrossRefGoogle Scholar
  151. Rigol-Sanchez, J. P., Chica-Olmo, M., & Abarca-Hernandez, F. (2003). Artificial neural networks as a tool for mineral potential mapping with GIS. International Journal of Remote Sensing, 24, 1151–1156.CrossRefGoogle Scholar
  152. Roberts, R. G., Sheahan, P., & Cherry, M. E. (Eds.) (1988). Ore deposit models. Geoscience Canada Reprint Series 3, Geological Association of Canada, NewfoundlandGoogle Scholar
  153. Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28, 1336–1354.CrossRefGoogle Scholar
  154. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.CrossRefGoogle Scholar
  155. Rogge, D. M., Halden, N. M., & Beaumont-Smith, C. J. (2000). Mineralization-potential mapping: A data-fusion analysis. In: Report of activities 2000, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, pp. 82–90.Google Scholar
  156. Rogge, D. M., Halden, N. M., & Beaumont-Smith, C. J. (2003). Application of data integration for deformation potential mapping using remotely acquired data sets within the Lynn Lake Greenstone Belt, northwestern Manitoba, Canada. Canadian Journal of Remote Sensing, 29, 458–471.CrossRefGoogle Scholar
  157. Rogge, D. M., Halden, N. M., & Beaumont-Smith, C. (2006). Application of data integration for shear-hosted Au potential modelling: Lynn Lake Greenstone Belt, Northwestern Manitoba, Canada. In J. R. Harris (Ed.), GIS for the earth sciences, Geological Association of Canada Special Publication 44 (pp. 191–210). John’s: Geological Association of Canada, St.Google Scholar
  158. Rose, A. W., Hawkes, H. E., & Webb, J. S. (1979). Geochemistry in mineral exploration (2nd ed., p. 657p). London: Academic Press.Google Scholar
  159. Roy, R., Cassard, D., Cobbold, P. R., Rossello, E. A., Billa, M., Bailly, L., et al. (2006). Predictive mapping for copper–gold magmatic-hydrothermal systems in NW Argentina: Use of a regional-scale GIS, application of an expert-guided data-driven approach, and comparison with results from a continental-scale GIS. Ore Geology Reviews, 29, 260–286.CrossRefGoogle Scholar
  160. Shabankareh, M., & Hezarkhani, A. (2017). Application of support vector machines for copper potential mapping in Kerman region, Iran. Journal of African Earth Sciences, 128, 116–126.CrossRefGoogle Scholar
  161. Shabankareh, M., & Hezarkhani, A. (2016). Copper potential mapping in Kerman copper bearing belt by using ANFIS method and the input evidential layer analysis. Arabian Journal of Geosciences, 9, 1–12.CrossRefGoogle Scholar
  162. Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuruko deposits in the Hokuroku district, Japan. Mathematical Geology, 28, 1017–1023.CrossRefGoogle Scholar
  163. Singer, D. A., & Kouda, R. (1997). Use of neural network to integrate geoscience information in the classification of mineral deposits and occurrences. In: Gubins, A. G. (Ed.), Proceedings of exploration 97: 4th decennial international conference on mineral exploration (pp. 127–134).Google Scholar
  164. Skabar, A. A. (2007a). Mineral potential mapping using Bayesian learning for multilayer perceptrons. Mathematical Geology, 39, 439–451.CrossRefGoogle Scholar
  165. Skabar, A. (2007b). Modeling the spatial distribution of mineral deposits using neural networks. Natural Resource Modeling, 20, 435–450.CrossRefGoogle Scholar
  166. Stensgaard, B. M., Chung, C. J., Rasmussen, T. M., & Stendal, H. (2006). Assessment of mineral potential using cross-validation techniques and statistical analysis: A case study from the Paleoproterozoic of West Greenland. Economic Geology, 101, 1297–1413.CrossRefGoogle Scholar
  167. Tangestani, M. H., & Moore, F. (2001). Porphyry copper potential mapping using the weights-of-evidence model in a GIS, northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences, 48, 695–701.CrossRefGoogle Scholar
  168. Tangestani, M. H., & Moore, F. (2002). The use of Dempster-Shafer model and GIS in integration of geoscientific data for porphyry copper potential mapping, north of Shahr-e-Babak, Iran. International Journal of Applied Earth Observation and Geoinformation, 4, 65–74.CrossRefGoogle Scholar
  169. Tangestani, M. H., & Moore, F. (2003). Mapping porphyry copper potential with a fuzzy model, northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences, 50, 311–317.CrossRefGoogle Scholar
  170. Thiart, C., & De Wit, M. (2000). Linking spatial statistics to GIS: Exploring potential gold and tin models of Africa. South African Journal of Geology, 103, 215–230.CrossRefGoogle Scholar
  171. Walshe, J. L., Cooke, D. R., & Neumayr, P. (2005). Five questions for fun and profit: a mineral systems perspective on metallogenic epochs, provinces and magmatic hydrothermal Cu and Au deposits. In J. Mao & F. P. Bierlein (Eds.), Mineral deposit research: Meeting the global challenge 1 (pp. 477–480). Heidelberg: Springer.CrossRefGoogle Scholar
  172. Wright, D. F., & Bonham-Carter, G. F. (1996). VHMS favourability mapping with GIS-based integration models, Chisel Lake–Anderson Lake area. In: Bonham-Carter, G.F., Galley, A.G., & Hall, G.E.M. (Eds.), EXTECH I: A multidisciplinary approach to massive sulphide research in the Rusty Lake–Snow Lake Greenstone Belts, Manitoba. Geological Survey of Canada Bulletin 426, pp. 339–376, 387–401.Google Scholar
  173. Wyborn, L. A. I., Heinrich, C. A., & Jaques, A. L. (1994). Australian proterozoic mineral systems: Essential ingredients and mappable criteria. In: Proceedings of Australian Institute of Mining and Metallurgy annual conference (pp. 109–115), 5–9 August 1994.Google Scholar
  174. Xu, S., Cui, Z., Yang, X., & Wang, G. (1992). A preliminary application of weights of evidence in gold exploration in Xiong-er Mountain Region, He-Nan province. Mathematical Geology, 24, 663–674.CrossRefGoogle Scholar
  175. Yazdi, Z., Rad, A. R. J., & Ajayebi, K. S. (2015). Analysis and modeling of geospatial datasets for porphyry copper prospectivity mapping in Chahargonbad area, Central Iran. Arabian Journal of Geosciences, 8, 8237–8248.CrossRefGoogle Scholar
  176. Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.CrossRefGoogle Scholar
  177. Yousefi, M., & Carranza, E. J. M. (2015b). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72–79.CrossRefGoogle Scholar
  178. Yousefi, M., & Carranza, E. J. M. (2017). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences, 128, 47–60.CrossRefGoogle Scholar
  179. Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.CrossRefGoogle Scholar
  180. Zeghouane, H., Allek, K., & Kesraoui, M. (2016). GIS-based weights of evidence modeling applied to mineral prospectivity mapping of Sn-W and rare metals in Laouni area, Central Hoggar, Algeria. Arabian Journal of Geosciences, 9, 1–13.CrossRefGoogle Scholar
  181. Zhang, N., & Zhou, K. (2015). Mineral prospectivity mapping with weights of evidence and fuzzy logic methods. Journal of Intelligent & Fuzzy Systems, 29, 2639–2651.CrossRefGoogle Scholar
  182. Zhang, N., Zhou, K., & Du, X. (2017). Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. Journal of African Earth Sciences, 128, 84–96.CrossRefGoogle Scholar
  183. Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59, 556–572.CrossRefGoogle Scholar
  184. Zhou, K., & Zhang, N. (2016). Mineral prospectivity mapping for Porphyry-type and hydrothermal vein-type copper deposits using fuzzy analytical hierarchy process and geographic information system. Journal of Intelligent & Fuzzy Systems, 31, 3143–3153.CrossRefGoogle Scholar
  185. Zuo, R. (2011). Regional exploration targeting model for Gangdese porphyry copper deposits. Resource Geology, 61, 296–303.CrossRefGoogle Scholar
  186. Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: a tool for mapping mineral prospectivity. Computers & Geosciences, 37, 1967–1975.CrossRefGoogle Scholar
  187. Zuo, R., Cheng, Q., & Agterberg, F. P. (2009). Application of a hybrid method combining multilevel fuzzy comprehensive evaluation with asymmetric fuzzy relation analysis to mapping prospectivity. Ore Geology Reviews, 35, 101–108.CrossRefGoogle Scholar
  188. Zuo, R., Zhang, Z., Zhang, D., Gao, Y., Carranza, E. J. M., & Wang, H. (2015). Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geology Reviews, 71, 502–515.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2017

Authors and Affiliations

  1. 1.Institute of GeosciencesState University of Campinas (Unicamp)CampinasBrazil
  2. 2.Economic Geology Research Centre (EGRU)James Cook UniversityTownsvilleAustralia

Personalised recommendations