Natural Resources Research

, Volume 27, Issue 2, pp 201–216 | Cite as

The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations

  • Kathryn M. GoodenoughEmail author
  • Frances Wall
  • David Merriman
Original Paper


The rare earth elements (REE) have attracted much attention in recent years, being viewed as critical metals because of China’s domination of their supply chain. This is despite the fact that REE enrichments are known to exist in a wide range of settings, and have been the subject of much recent exploration. Although the REE are often referred to as a single group, in practice each individual element has a specific set of end-uses, and so demand varies between them. Future demand growth to 2026 is likely to be mainly linked to the use of NdFeB magnets, particularly in hybrid and electric vehicles and wind turbines, and in erbium-doped glass fiber for communications. Supply of lanthanum and cerium is forecast to exceed demand. There are several different types of natural (primary) REE resources, including those formed by high-temperature geological processes (carbonatites, alkaline rocks, vein and skarn deposits) and those formed by low-temperature processes (placers, laterites, bauxites and ion-adsorption clays). In this paper, we consider the balance of the individual REE in each deposit type and how that matches demand, and look at some of the issues associated with developing these deposits. This assessment and overview indicate that while each type of REE deposit has different advantages and disadvantages, light rare earth-enriched ion adsorption types appear to have the best match to future REE needs. Production of REE as by-products from, for example, bauxite or phosphate, is potentially the most rapid way to produce additional REE. There are still significant technical and economic challenges to be overcome to create substantial REE supply chains outside China.


Rare earth elements Resources Supply chain Minerals processing 



The overview presented here has been developed through discussions and focused research carried out as part of the EURARE, SoS RARE and HiTech AlkCarb projects. The EURARE project is funded by the European Community’s Seventh Framework Programme under Grant Agreement No. 309373. The SoS RARE project is funded by the UK’s Natural Environment Research Council under Grant Agreement No. NE/M011429/1. The HiTech AlkCarb project is funded by the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 689909). KG publishes with the permission of the Executive Director of the British Geological Survey. The Editor-in-Chief, John Carranza, and two anonymous reviewers are thanked for their positive comments on the initial manuscript.


  1. Ali, S. (2014). Social and environmental impact of the rare earth industries. Resources, 3(1), 123.CrossRefGoogle Scholar
  2. Al-Thyabat, S., & Zhang, P. (2015). In-line extraction of REE from Dihydrate (DH) and HemiDihydrate (HDH) wet processes. Hydrometallurgy, 153, 30–37.CrossRefGoogle Scholar
  3. Bao, Z., & Zhao, Z. (2008). Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews, 33(3–4), 519–535.CrossRefGoogle Scholar
  4. Berger, A., Janots, E., Gnos, E., Frei, R., & Bernier, F. (2014). Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Applied Geochemistry, 41, 218–228.CrossRefGoogle Scholar
  5. Binnemans, K., & Jones, P. T. (2015). Rare earths and the balance problem. Journal of Sustainable Metallurgy, 1(1), 29–38.CrossRefGoogle Scholar
  6. Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., & Pontikes, Y. (2015). Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review. Journal of Cleaner Production, 99, 17–38.CrossRefGoogle Scholar
  7. Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., et al. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1–22.CrossRefGoogle Scholar
  8. Boni, M., Rollinson, G., Mondillo, N., Balassone, G., & Santoro, L. (2013). Quantitative mineralogical characterization of karst bauxite deposits in the Southern Apennines, Italy. Economic Geology, 108(4), 813–833.CrossRefGoogle Scholar
  9. Borra, C. R., Pontikes, Y., Binnemans, K., & Van Gerven, T. (2015). Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 76, 20–27.CrossRefGoogle Scholar
  10. Borst, A. M., Friis, H., Andersen, T., Nielsen, T. F. D., Waight, T. E., & Smit, M. A. (2016). Zirconosilicates in the kakortokites of the Ilimaussaq complex, South Greenland: Implications for fluid evolution and HFSE–REE mineralisation in agpaitic systems. Mineralogical Magazine. doi: 10.1180/minmag.2016.080.046.Google Scholar
  11. Broom-Fendley, S., Brady, A. E., Wall, F., Gunn, G., & Dawes, W. (2017). REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geology Reviews, 81(Part 1), 23–41.CrossRefGoogle Scholar
  12. Castor, S. B. (2008). The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. The Canadian Mineralogist, 46(4), 779–806.CrossRefGoogle Scholar
  13. Chakhmouradian, A. R., & Wall, F. (2012). Rare earth elements: minerals, mines, magnets (and more). Elements, 8, 333–340.CrossRefGoogle Scholar
  14. Chakhmouradian, A. R., & Zaitsev, A. N. (2012). Rare earth mineralization in igneous rocks: Sources and processes. Elements, 8, 347–353.CrossRefGoogle Scholar
  15. Davris, P., Balomenos, E., Panias, D., & Paspaliaris, I. (2016a). Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy, 164, 125–135.CrossRefGoogle Scholar
  16. Davris, P., Stopic, S., Balomenos, E., Panias, D., Paspaliaris, I., & Friedrich, B. (2016b). Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Minerals Engineering. doi: 10.1016/j.mineng.2016.12.011.Google Scholar
  17. Deady, É. A., Mouchos, E., Goodenough, K., Williamson, B. J., & Wall, F. (2016). A review of the potential for rare-earth element resources from European red muds: Examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineralogical Magazine, 80(1), 43–61.CrossRefGoogle Scholar
  18. Dostal, J. (2016). Rare metal deposits associated with alkaline/peralkaline igneous rocks. In P. Verplanck & M. Hitzman (Eds.), Rare earth and critical elements in ore deposits (Vol. Reviews in Economic Geology 18, pp. 33–54). Littleton, Colorado: Society of Economic Geologists.Google Scholar
  19. Du, X., & Graedel, T. E. (2013). Uncovering the end uses of the rare earth elements. Science of the Total Environment, 461–462, 781–784.CrossRefGoogle Scholar
  20. EC. (2014). Report on critical raw materials for the EU.
  21. Goodenough, K. M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., et al. (2016). Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews, 72(Part 1), 838–856.CrossRefGoogle Scholar
  22. Goodenough, K. M., & Wall, F. (2016). Critical Metal Mineralogy: Preface to the special issue of Mineralogical Magazine. Mineralogical Magazine, 80(1), 1–4.CrossRefGoogle Scholar
  23. Gupta, C. K., & Krishnamurthy, N. (2005). Extractive metallurgy of rare earths. Boca Raton: CRC Press.Google Scholar
  24. Hao, Z. (2016). Developments in dysprosium and terbium free rare earth magnets. Paper presented at the 12th international rare earths conference, Hong Kong,Google Scholar
  25. Harmer, R., & Nex, P. (2016). Rare earth deposits of Africa. Episodes, 39(2), 381–406.CrossRefGoogle Scholar
  26. Hedrick, J. B., Sinha, S. P., & Kosynkin, V. D. (1997). Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe + 3)O3. Journal of Alloys and Compounds, 250(1–2), 467–470.CrossRefGoogle Scholar
  27. Holtstam, D., Andersson, U. B., Broman, C., & Mansfeld, J. (2014). Origin of REE mineralization in the bastnäs-type Fe-REE-(Cu–Mo–Bi–Au) deposits, Bergslagen, Sweden. Mineralium Deposita, 49, 933–966.CrossRefGoogle Scholar
  28. IFoR. (2016). World robotics 2016 industrial robots.
  29. Jaireth, S., Hoatson, D. M., & Miezitis, Y. (2014). Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geology Reviews, 62, 72–128.CrossRefGoogle Scholar
  30. Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114.CrossRefGoogle Scholar
  31. Jordens, A., Sheridan, R. S., Rowson, N. A., & Waters, K. E. (2014). Processing a rare earth mineral deposit using gravity and magnetic separation. Minerals Engineering, 62, 9–18.CrossRefGoogle Scholar
  32. Jowitt, S. M., Medlin, C. C., & Cas, R. A. F. (2017). The rare earth element (REE) mineralisation potential of highly fractionated rhyolites: A potential low-grade, bulk tonnage source of critical metals. Ore Geology Reviews, 86, 548–562.CrossRefGoogle Scholar
  33. Kogarko, L. N., Williams, C. T., & Woolley, A. R. (2002). Chemical evolution and petrogenetic implications of loparite in the layered, agpaitic Lovozero complex, Kola Peninsula, Russia. Mineralogy and Petrology, 74(1), 1–24.CrossRefGoogle Scholar
  34. Kravchenko, S., & Pokrovsky, B. (1995). The Tomtor alkaline ultrabasic massif and related REE–Nb deposits, northern Siberia. Economic Geology, 90(3), 676–689.CrossRefGoogle Scholar
  35. Krishnamurthy, N., & Gupta, C. K. (2015). Extractive metallurgy of rare earths (2nd ed.). Boca Raton: CRC Press.CrossRefGoogle Scholar
  36. Kumari, A., Panda, R., Jha, M. K., Kumar, J. R., & Lee, J. Y. (2015). Process development to recover rare earth metals from monazite mineral: A review. Minerals Engineering, 79, 102–115.CrossRefGoogle Scholar
  37. Kuzmin, V. I., Pashkov, G. L., Lomaev, V. G., Voskresenskaya, E. N., & Kuzmina, V. N. (2012). Combined approaches for comprehensive processing of rare earth metal ores. Hydrometallurgy, 129–130, 1–6.CrossRefGoogle Scholar
  38. Kynicky, J., Smith, M. P., & Xu, C. (2012). Diversity of rare earth deposits: The key example of China. Elements, 8(5), 361–367.CrossRefGoogle Scholar
  39. Lazareva, E. V., Zhmodik, S. M., Dobretsov, N. L., Tolstov, A. V., Shcherbov, B. L., Karmanov, N. S., et al. (2015). Main minerals of abnormally high-grade ores of the Tomtor deposit (Arctic Siberia). Russian Geology and Geophysics, 56(6), 844–873.CrossRefGoogle Scholar
  40. Li, M., Duan, C., Wang, H., Liu, Z., Wang, M., & Hu, Y. (2016). Lanthanum histidine with pentaerythritol and zinc stearate as thermal stabilizers for poly(vinyl chloride). Journal of Applied Polymer Science. doi: 10.1002/app.42878.
  41. Li, M., Jiang, Z., Liu, Z., Hu, Y., Wang, M., & Wang, H. (2013). Effect of lanthanum cyanurate as novel organic thermal stabilizers for polyvinyl chloride. Polymer Engineering & Science, 53(8), 1706–1711.CrossRefGoogle Scholar
  42. Lottermoser, B. G. (1990). Rare-earth element mineralisation within the Mt. Weld carbonatite laterite, Western Australia. Lithos, 24(2), 151–167.CrossRefGoogle Scholar
  43. Machacek, E., & Fold, N. (2014). Alternative value chains for rare earths: The Anglo-deposit developers. Resources Policy, 42, 53–64.CrossRefGoogle Scholar
  44. Machacek, E., & Kalvig, P. (2016). Assessing advanced rare earth element-bearing deposits for industrial demand in the EU. Resources Policy, 49, 186–203.CrossRefGoogle Scholar
  45. Mariano, A. N., & Mariano, A. (2012). Rare earth mining and exploration in North America. Elements, 8(5), 369–376.CrossRefGoogle Scholar
  46. Marks, M. A. W., Hettmann, K., Schilling, J., Frost, B. R., & Markl, G. (2011). The mineralogical diversity of alkaline igneous rocks: Critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology, 52(3), 439–455.CrossRefGoogle Scholar
  47. Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43.CrossRefGoogle Scholar
  48. McDonough, W. F., & Sun, S.-S. (1995). The composition of the earth. Chemical Geology, 120, 223–253.CrossRefGoogle Scholar
  49. Moldoveanu, G. A., & Papangelakis, V. G. (2012). Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy, 117–118, 71–78.CrossRefGoogle Scholar
  50. Moldoveanu, G. A., & Papangelakis, V. G. (2016). An overview of rare-earth recovery by ion-exchange leaching from ion-adsorption clays of various origins. Mineralogical Magazine, 80(1), 63–76.CrossRefGoogle Scholar
  51. Mudd, G. M., & Jowitt, S. M. (2016). Rare earth elements from heavy mineral sands: Assessing the potential of a forgotten resource. Applied Earth Science, 125(3), 107–113.CrossRefGoogle Scholar
  52. Nassar, N. T., Du, X., & Graedel, T. E. (2015). Criticality of the rare earth elements. Journal of Industrial Ecology, 19(6), 1044–1054.CrossRefGoogle Scholar
  53. Nuttall, M. (2013). Zero-tolerance, uranium and Greenland’s mining future. The Polar Journal, 3(2), 368–383.CrossRefGoogle Scholar
  54. Ogata, T., Narita, H., Tanaka, M., Hoshino, M., Kon, Y., & Watanabe, Y. (2016). Selective recovery of heavy rare earth elements from apatite with an adsorbent bearing immobilized tridentate amido ligands. Separation and Purification Technology, 159, 157–160.CrossRefGoogle Scholar
  55. Pagano, G., Guida, M., Tommasi, F., & Oral, R. (2015). Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40–48.CrossRefGoogle Scholar
  56. Riba, J.-R., López-Torres, C., Romeral, L., & Garcia, A. (2016). Rare-earth-free propulsion motors for electric vehicles: A technology review. Renewable and Sustainable Energy Reviews, 57, 367–379.CrossRefGoogle Scholar
  57. Roskill. (2016a). Lithium: Global industry, markets and outlook (13th ed.). London, UK: Roskill.Google Scholar
  58. Roskill. (2016b). Rare earths: Global industry, markets and outlook (16th ed.). London, UK: Roskill.Google Scholar
  59. Salvi, S., & Williams-Jones, A. E. (1996). The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Acta, 60(11), 1917–1932.CrossRefGoogle Scholar
  60. Salvi, S., & Williams-Jones, A. E. (2006). Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos, 91(1–4), 19–34.CrossRefGoogle Scholar
  61. Sanematsu, K., & Watanabe, Y. (2016). Characteristics and genesis of ion adsorption-type rare earth element deposits. In P. Verplanck & M. Hitzman (Eds.), Rare earth and critical elements in ore deposits (Vol. Reviews in Economic Geology 18, pp. 55–79). Littleton, Colorado: Society of Economic Geologists.Google Scholar
  62. Santana, I. V., Wall, F., & Botelho, N. F. (2015). Occurrence and behavior of monazite-(Ce) and xenotime-(Y) in detrital and saprolitic environments related to the Serra Dourada granite, Goiás/Tocantins State, Brazil: Potential for REE deposits. Journal of Geochemical Exploration, 155, 1–13.CrossRefGoogle Scholar
  63. Sengupta, D., & Van Gosen, B. S. (2016). Placer-type rare earth element deposits. In P. Verplanck & M. Hitzman (Eds.), Rare earth and critical elements in ore deposits (Vol. Reviews in Economic Geology 18, pp. 81–100). Littleton, Colorado: Society of Economic Geologists.Google Scholar
  64. Seredin, V. V. (2010). A new method for primary evaluation of the outlook for rare earth element ores. Geology of Ore Deposits, 52(5), 428–433.CrossRefGoogle Scholar
  65. Sheard, E. R., Williams-Jones, A. E., Heiligmann, M., Pederson, C., & Trueman, D. L. (2012). Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Economic Geology, 107, 81–104.CrossRefGoogle Scholar
  66. Sjöqvist, A. S. L., Cornell, D. H., Andersen, T., Erambert, M., Ek, M., & Leijd, M. (2013). Three compositional varieties of rare-earth element ore: Eudialyte-group minerals from the Norra Kärr Alkaline Complex, Southern Sweden. Minerals, 3, 94–120.CrossRefGoogle Scholar
  67. Smith, M. P., Campbell, L. S., & Kynicky, J. (2015). A review of the genesis of the world class Bayan Obo Fe–REE–Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions. Ore Geology Reviews, 64, 459–476.CrossRefGoogle Scholar
  68. Smith, M. P., Moore, K., Kavecsánszki, D., Finch, A. A., Kynicky, J., & Wall, F. (2016). From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geoscience Frontiers, 7(3), 315–334.CrossRefGoogle Scholar
  69. Smith Stegen, K. (2015). Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy, 79, 1–8.CrossRefGoogle Scholar
  70. Sørensen, H. (1992). Agpaitic nepheline syenites: A potential source of rare elements. Applied Geochemistry, 7(5), 417–427.CrossRefGoogle Scholar
  71. Sørensen, H., Bailey, J. C., & Rose-Hansen, J. (2011). The emplacement and crystallization of the U-Th–REE rich agpaitic and hyperagpaitic lujavrites at Kvanefjeld, Ilímaussaq alkaline complex, South Greenland. Bulletin of the Geological Society of Denmark, 59, 69–92.Google Scholar
  72. Spandler, C., & Morris, C. (2016). Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks. Contributions to Mineralogy and Petrology, 171(12), 104.CrossRefGoogle Scholar
  73. Stark, T., Silin, I., & Wotruba, H. (2016). Mineral processing of eudialyte ore from Norra Kärr. Journal of Sustainable Metallurgy, 3, 1–7.Google Scholar
  74. Timofeev, A., & Williams-Jones, A. E. (2015). The origin of niobium and tantalum mineralization in the nechalacho REE deposit, NWT, Canada. Economic Geology, 110(7), 1719–1735.CrossRefGoogle Scholar
  75. Verplanck, P. L., & Hitzman, M. (2016). Rare earth and critical elements in ore deposits (Vol. Reviews in Economic Geology 18). Littleton, Colorado: Society of Economic Geologists.Google Scholar
  76. Verplanck, P. L., Mariano, A. N., & Mariano, A. (2016). Rare earth element ore geology of carbonatites. In P. Verplanck & M. Hitzman (Eds.), Rare earth and critical elements in ore deposits (Vol. Reviews in Economic Geology 18, pp. 5–32). Littleton, Colorado: Society of Economic Geologists.Google Scholar
  77. Voßenkaul, D., Birich, A., Müller, N., Stoltz, N., & Friedrich, B. (2016). Hydrometallurgical processing of eudialyte bearing concentrates to recover rare earth elements via low-temperature dry digestion to prevent the silica gel formation. Journal of Sustainable Metallurgy, 3, 1–11.Google Scholar
  78. Wall, F. (2014). Rare earth elements. In A. G. Gunn (Ed.), Critical metals handbook (pp. 312–339). London: Wiley.Google Scholar
  79. Wall, F., & Mariano, A. N. (1996). Rare earth minerals in carbonatites: A discussion centred on the Kangankunde Carbonatite, Malawi. In A. P. Jones, F. Wall, & C. T. Williams (Eds.), Rare earth minerals: Chemistry, origin and ore deposits (pp. 193–226). London: Chapman and Hall.Google Scholar
  80. Wall, F., Williams, C., Woolley, A., & Nasraoui, M. (1996). Pyrochlore from weathered carbonatite at Lueshe, Zaire. Mineralogical Magazine, 60(5), 731–750.CrossRefGoogle Scholar
  81. Wang, Q., Deng, J., Liu, X., Zhang, Q., Sun, S., Jiang, C., et al. (2010). Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. Journal of Asian Earth Sciences, 39(6), 701–712.CrossRefGoogle Scholar
  82. Xie, F., Zhang, T. A., Dreisinger, D., & Doyle, F. (2014). A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 56, 10–28.CrossRefGoogle Scholar
  83. Xu, C., Kynický, J., Smith, M. P., Kopriva, A., Brtnický, M., Urubek, T., et al. (2017). Origin of heavy rare earth mineralization in South China. Nature Communications, 8, 14598.CrossRefGoogle Scholar
  84. Yang, X. J., Lin, A., Li, X.-L., Wu, Y., Zhou, W., & Chen, Z. (2013). China’s ion-adsorption rare earth resources, mining consequences and preservation. Environmental Development, 8, 131–136.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2017

Authors and Affiliations

  1. 1.British Geological Survey, The Lyell CentreEdinburghUK
  2. 2.Camborne School of Mines and Environment and Sustainability InstituteUniversity of Exeter, Penryn CampusPenrynUK
  3. 3.Roskill Information Services Ltd.LondonUK

Personalised recommendations