Advertisement

Natural Resources Research

, Volume 25, Issue 2, pp 161–181 | Cite as

Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study

  • Jared L. DeutschEmail author
  • Kevin Palmer
  • Clayton V. Deutsch
  • Jozef Szymanski
  • Thomas H. Etsell
Article

Abstract

High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit in South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.

Keywords

Geostatistics Multivariate simulation Multiple imputation Multiscale modeling Nonlinear variables Unequal sampling Parameter uncertainty Model verification 

Notes

Acknowledgments

Many discussions on best practices in multivariate geostatistical modeling with Ryan Barnett and other colleagues at the Centre for Computational Geostatistics are gratefully acknowledged. The input of Bryan Rairdan, Rodrigo Marinho, the editor of Natural Resources Research, and three anonymous reviewers is also much appreciated.

References

  1. Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139–177.Google Scholar
  2. Alabert, F. G. (1987). Stochastic imaging of spatial distributions using hard and soft information. Master’s Thesis, Stanford University, Stanford, CA.Google Scholar
  3. Babak, O., Cuba, M. A., & Leuangthong, O. (2013). Direct upscaling of semivariograms and cross semivariograms for scale-consistent geomodeling. Transactions of the Society for Mining, Metallurgy, and Exploration, 334(1), 544–552.Google Scholar
  4. Babak, O., & Deutsch, C. (2009a). Accounting for parameter uncertainty in reservoir uncertainty assessment: The conditional finite-domain approach. Natural Resources Research, 18(1), 7–17.CrossRefGoogle Scholar
  5. Babak, O., & Deutsch, C. (2009b). Collocated cokriging based on merged secondary attributes. Mathematical Geosciences, 41(8), 921–926.CrossRefGoogle Scholar
  6. Barnett, R., & Deutsch, C. (2012). Practical implementation of nonlinear transforms for modeling geometallurgical variables. In P. Abrahamsen, R. Hauge, & O. Kolbjørnsen (Eds.), Geostatistics Oslo 2012 (Vol. 17, pp. 409–422). Netherlands: Springer.CrossRefGoogle Scholar
  7. Barnett, R. M., & Deutsch, C. V. (2013). Imputation of geologic data. Centre for Computational Geostatistics, 15(102).Google Scholar
  8. Barnett, R. M., & Deutsch, C. V. (2015). Multivariate imputation of unequally sampled geologic variables. Mathematical Geosciences,. doi: 10.1007/s11004-014-9580-8.Google Scholar
  9. Barnett, R. M., Manchuk, J. G., & Deutsch, C. V. (2013). Projection pursuit multivariate transform. Mathematical Geosciences, 46(3), 337–359.CrossRefGoogle Scholar
  10. Bliss, C. I. (1934). The method of probits. Science, 79(2037), 38–39.CrossRefGoogle Scholar
  11. Boisvert, J. B., Rossi, M. E., Ehrig, K., & Deutsch, C. V. (2013). Geometallurgical modeling at Olympic Dam Mine, South Australia. Mathematical Geosciences, 1–25.Google Scholar
  12. Carrasco, P., Chiles, J., & Seguret, S. (2008). Additivity, metallurgical recovery and grade. Paper presented at the Geostats 2008, Santiago, Chile.Google Scholar
  13. Chilès, J. P., & Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  14. Coward, S., Vann, J., Dunham, S., & Stewart, M. (2009). The primary-response framework for geometallurgical variables. Paper presented at the Seventh International Mining Geology Conference 2009, Perth, Western Australia.Google Scholar
  15. Davis, B., & Greenes, K. (1983). Estimation using spatially distributed multivariate data: An example with coal quality. Journal of the International Association for Mathematical Geology, 15(2), 287–300.CrossRefGoogle Scholar
  16. Desbarats, A. J., & Dimitrakopoulos, R. (2000). Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors. Mathematical Geology, 32(8), 919–942.CrossRefGoogle Scholar
  17. Deutsch, J. L., & Deutsch, C. V. (2010). Some geostatistical software implementation details. Centre for Computational Geostatistics, 12(412).Google Scholar
  18. Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical software library and user’s guide (2nd ed.). New York: Oxford University Press.Google Scholar
  19. Deutsch, C. V., & Wilde, B. J. (2013). Modeling multiple coal seams using signed distance functions and global kriging. International Journal of Coal Geology, 112, 87–93.CrossRefGoogle Scholar
  20. Dimitrakopoulos, R., & Jewbali, A. (2013). Joint stochastic optimization of short- and long- term mine production planning: Method and application in a large operating gold mine. IMM Transactions, Mining Technology, 122(2), 110–112.CrossRefGoogle Scholar
  21. Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics.Google Scholar
  22. Enders, C. K. (2010). Applied missing data analysis. Guilford Press.Google Scholar
  23. Everett, J. E., & Howard, T. J. (2011). Predicting finished product properties in the mining industry from pre-extraction data. Paper presented at the The First AusIMM International Geometallurgy Conference, Brisbane, Queensland.Google Scholar
  24. Fedkiw, S. O. R. (2003). Level set methods and dynamic implicit surfaces. New York: Springer.Google Scholar
  25. Galli, A., Beucher, H., Leloch, G., & Doligez, B. (1994). The pros and cons of the truncated Gaussian method. Geostatistical Simulations: Proceedings of the Geostatistical Simulation Workshop, 7, 217–233.CrossRefGoogle Scholar
  26. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.Google Scholar
  27. Isaaks, E. H. (1990). The application of Monte Carlo methods to the analysis of spatially correlated data. PhD Thesis, Stanford University, Stanford, CA.Google Scholar
  28. Journel, A., & Xu, W. (1994). Posterior identification of histograms conditional to local data. Mathematical Geology, 26(3), 323–359.CrossRefGoogle Scholar
  29. Keeney, L., & Walters, S. (2011). A methodology for geometallurgical mapping and orebody modelling. Paper presented at the The First AusIMM International Geometallurgy Conference, Brisbane, Queensland.Google Scholar
  30. Kuhar, L. L., Jeffrey, M. I., McFarlane, A. J., Benvie, B., Botsis, N. M., Turner, N. & Robinson, D. J. (2011). The development of small-scale tests to determine hydrometallurgical indices for orebody mapping and domaining. Paper presented at the The First AusIMM International Geometallurgy Conference, Brisbane, Queensland.Google Scholar
  31. Leuangthong, O., Hodson, T., Rolley, P., & Deutsch, C. V. (2006). Multivariate geostatistical simulation at Red Dog mine, Alaska, USA. CIM Bulletin, 99(1094), 10.Google Scholar
  32. Lozano, C., & Bennett, C. (2003). Geometallurgical modeling applied to production forecasting, plant design and optimisation. SGS Metallurgical Services Technical Report.Google Scholar
  33. Lund, C., Lamberg, P., & Lindberg, T. (2014). A new method to quantify mineral textures for geometallurgy. Cape Town: Paper presented at Process Mineralogy.Google Scholar
  34. Manchuk, J. G., & Deutsch, C. V. (2012). A flexible sequential Gaussian simulation program: USGSIM. Computers & Geosciences, 41, 208–216.CrossRefGoogle Scholar
  35. Marchant, B. P., & Lark, R. M. (2004). Estimating Variogram Uncertainty. Mathematical Geology, 36(8), 867–898.CrossRefGoogle Scholar
  36. Moyeed, R. A., & Papritz, A. (2002). An empirical comparison of kriging methods for nonlinear spatial point prediction. Mathematical Geology, 34(4), 365–386.CrossRefGoogle Scholar
  37. Newton, M. J., & Graham, J. M. (2011). Spatial modelling and optimisation of geometallurgical indices. Paper presented at the The First AusIMM International Geometallurgy Conference, Brisbane, Queensland.Google Scholar
  38. Ortiz, J., & Deutsch, C. (2002). Calculation of uncertainty in the variogram. Mathematical Geology, 34(2), 169–183.CrossRefGoogle Scholar
  39. Pardo-Igúzquiza, E., & Dowd, P. (2001). Variance-covariance matrix of the experimental variogram: Assessing variogram uncertainty. Mathematical Geology, 33(4), 397–419.CrossRefGoogle Scholar
  40. Pawlowsky-Glahn, V., & Olea, R. A. (2004). Geostatistical analysis of compositional data. USA: Oxford University Press.Google Scholar
  41. Powell, M. S. (2013). Utilising orebody knowledge to improve comminution circuit design and enery utilisation. Paper presented at the The Second AusIMM International Geometallurgy Conference, Brisbane, Australia.Google Scholar
  42. Pyrcz, M. J., & Deutsch, C. V. (2014). Geostatistical reservoir modeling. Oxford: Oxford University Press.Google Scholar
  43. Pyrcz, M. J., Gringarten, E., Frykman, P., & Deutsch, C. V. (2006). Representative input parameters for geostatistical simulation. In T. C. Coburn, J. M. Yarus, & R. L. Chambers (Eds.), Stochastic modeling and geostatistics: Principles, methods, and case studies, volume II: AAPG Computer Applications in Geology (Vol. 5, pp. 123–137). New York: Wiley.Google Scholar
  44. Rossi, M. E., & Deutsch, C. V. (2013). Mineral resource estimation. New York: Springer Science & Business Media.Google Scholar
  45. Silva, D. A., & Deutsch, C. V. (2013). Correcting distance function models to correct proportions. Centre for Computational Geostatistics, 15(116), 1–10.Google Scholar
  46. Switzer, P., & Green, A. A. (1984). Min/max autocorrelation factors for multivariate spatial imagery. In L. Billard (Ed.), Computer Science and Statistics: The Interface (Vol. 16). Amsterdam: Elsevier.Google Scholar
  47. van den Boogaart, K. G., Konsulke, S., & Tolosana Delgado, R. (2013). Non-linear geostatistics for geometallurgical optimisation. Paper presented at the The Second AusIMM International Geometallurgy Conference, Brisbane, Australia.Google Scholar
  48. Van Tonder, E., Deglon, D. A., & Napier-Munn, T. J. (2010). The effect of ore blends on the mineral processing of platinum ores. Minerals Engineering, 23(8), 621–626.CrossRefGoogle Scholar
  49. Vargas-Guzmán, J. A., & Dimitrakopoulos, R. (2003). Computational properties of min/max autocorrelation factors. Computers & Geosciences, 29(6), 715–723.CrossRefGoogle Scholar
  50. Yan, D., & Eaton, R. (1994). Breakage properties of ore blends. Minerals Engineering, 7(2–3), 185–199.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2015

Authors and Affiliations

  • Jared L. Deutsch
    • 1
    Email author
  • Kevin Palmer
    • 2
  • Clayton V. Deutsch
    • 1
  • Jozef Szymanski
    • 1
  • Thomas H. Etsell
    • 3
  1. 1.School of Mining and Petroleum Engineering, Department of Civil and Environmental EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Teck Resources LimitedVancouverCanada
  3. 3.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations