Natural Resources Research

, Volume 22, Issue 4, pp 297–309 | Cite as

The Precision of C Stock Estimation in the Ludhikola Watershed Using Model-Based and Design-Based Approaches

  • T. S. Chinembiri
  • M. C. Bronsveld
  • D. G. Rossiter
  • T. Dube
Article

Abstract

In this study, two sampling protocols using a model-based and a design-based framework were juxtaposed to evaluate their precision in the estimation of C stock in the Ludikhola watershed, Nepal. The model-based approach exploits the spatial dependencies in the sampled variable and may therefore be attractive over the design-based approach as it reduces the substantial costs of survey and effort required in the latter. Scales of spatial variability for C stock which resulted in a grid resolution of 10,000 m2 were determined using a reconnaissance variogram. Akaike information criterion was used for the selection of the best linear model of feature space for use in kriging with external drift (KED). Among the five tested covariates, distance, elevation, and aspect were statistically significant, with the best model of feature space accounting for 87.7% variability of C stock. An ANOVA established significance differences in mean C stocks (P = 0.00017). KED using the best model of feature space was found to be more precise, (9.89 ± 0.17) sqrt mg C/ha, than a pure-based approach of ordinary kriging and the design-based approach, (9.91 ± 0.8) sqrt mg C/ha. The confidence bounds of the two estimators showed that their confidence intervals will overlap 99.7% of the time, with both confidence intervals falling within the 95% confidence bounds of each other. There is less uncertainty around the mean C stock estimated using the model-based approach than the mean C stock estimated using the design-based approach. The model-based approach is a prospective option for the REDD framework.

Keywords

Geostatistics kriging with external drift design-based AIC ANOVA REDD 

References

  1. Ahmed, S., & De Marsily, G. (1987). Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water Resources Research, 23(9), 1717–1737.CrossRefGoogle Scholar
  2. Akaike, H. (1978). A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics, 30, 9–14.CrossRefGoogle Scholar
  3. ANSAB. (2010). Forest carbon stock of community forests in three watersheds (Ludikhola, Kayarkhola & Charnawati). In T. G. Capital (Ed.), REDD+ Pilot project (pp. 13–36). Kathmandu: ICIMOD, ANSAB, FECOFUN.Google Scholar
  4. Aydin Coskun, A., & Gençay, G. (2011). Kyoto Protocol and “deforestation”: A legal analysis on Turkish environment and forest legislation. Forest Policy and Economics, 13(5), 366–377.CrossRefGoogle Scholar
  5. Baker, D. J., Richards, G., Grainger, A., Gonzalez, P., Brown, S., DeFries, R., et al. (2010). Achieving forest carbon information with higher certainty: A five-part plan. Environmental Science & Policy, 13(3), 249–260.CrossRefGoogle Scholar
  6. Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684–1694.CrossRefGoogle Scholar
  7. Berterretche, M., Hudak, A. T., Cohen, W. B., Maiersperger, T. K., Gower, S. T., & Dungan, J. (2005). Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sensing of Environment, 96(1), 49–61.CrossRefGoogle Scholar
  8. Bhat, D. M., & Ravindranath, N. H. (2011). Above-ground standing biomass and carbon stock dynamics under a varied degree of anthropogenic pressure in tropical rain forests of Uttara Kannada District, Western Ghats, India. Taiwania, 56(2), 85–96Google Scholar
  9. Brown, S. (2002). Measuring carbon in forests: current status and future challenges. Environmental Pollution, 116(3), 363–372.CrossRefGoogle Scholar
  10. Bryan, J., Shearman, P., Ash, J., Kirkpatrick, J. B., Hwoor, G. H., Hoodra, R., et al. (2010). Estimating rainforest biomass stocks and carbon loss from deforestation and degradation in Papua New Guinea 1972–2002: Best estimates, uncertainties and research needs. Journal of Environmental Management, 91, 995–1001.CrossRefGoogle Scholar
  11. Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America, 58(1), 1501–1511.CrossRefGoogle Scholar
  12. Cochran, W. G. (1977). Sampling techniques (3rd ed., pp. 219–222). New York: Wiley.Google Scholar
  13. de Gruijter, J., Brus, D. J., Bierkens, M. F. P., Knotters, M., Hardq, H., Jafroc, K., et al. (2006). Sampling for natural resource monitoring. New York: Springer.Google Scholar
  14. Deutsch, C., & Journel, A. (1998). GSLIB: Geostatistical software library and user’s guide (2nd ed.). New York: Oxford University Press.Google Scholar
  15. Diggle, P. J., & Ribeiro, P. J. (2007). Geostatistical design. In Model-based geostatistics (pp. 199–212). New York: Springer.Google Scholar
  16. Faraway, J. J. (2002). Practical regression and Anova using R. London: CRC Press.Google Scholar
  17. Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., et al. (2006). Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate, 19(14), 3337–3353.CrossRefGoogle Scholar
  18. Gibbs, K. H., Brown, S., & Niles, O. J. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(4), 045023.CrossRefGoogle Scholar
  19. Goldstein, H., & Healy, M. J. R. (1995). The graphical presentation of a collection of means. Journal of the Royal Statistical Society: Series A, 158, 175–177.CrossRefGoogle Scholar
  20. Goodchild, M. F. (1994). Integrating GIS and remote sensing for vegetation analysis and modeling: methodological issues. Journal of Vegetation Science, 5, 615–626.CrossRefGoogle Scholar
  21. Guibal, D. (1973). L’ estimation des oukoumés du Gabon (p. 333). Centre de Morphologie Mathématique, Paris.Google Scholar
  22. Hengl, T. (2007). A practical guide to geostatistical mapping of environmental variables. JRC Technical and Scientific Reports, pp. 120–130.Google Scholar
  23. Houghton, R. A. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11(6), 945–958.CrossRefGoogle Scholar
  24. Hudson, G., & Wackernagel, H. (1994). Mapping temperature using kriging with external drift: Theory and an example from Scotland. International Journal of Climatology, 14, 77–91.CrossRefGoogle Scholar
  25. IPCC. (2007). Summary for policy makers. In S. D. Solomon, Q. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: IPCC.Google Scholar
  26. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics (p. 561). New York: Oxford University Press.Google Scholar
  27. James, F. C., & McCulloch, C. E. (1990). Multivariate analysis in ecology and systematics: Panacea or Pandora’s box?’. Annual Review of Ecology and Systematics, 21, 129–166.Google Scholar
  28. Keller, M., Palace, M., & Hurtt, G. (2001). Biomass estimation in the Tapajos National Forest, Brazil: Examination of sampling and allometric uncertainties. Forest Ecology and Management, 154(3), 371–382.CrossRefGoogle Scholar
  29. Kramer, C. Y. (1956). Extension of multiple range tests to group means with unequal numbers of replications. Biometrics, 12(1), 309–310.Google Scholar
  30. Leemans, R., van Amstel, A., Battjes, C., Kreileman, E., Toet, S., Kwwort, R., et al. (1996). The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source. Global Environmental Change, 6(4), 335–357.CrossRefGoogle Scholar
  31. Longford, N. T. (2008). ANOVA & ordinary regression. In A. Rizzi & M. Vichi (Eds.), Studying human populations (pp. 1–35). New York: Springer.Google Scholar
  32. MacNally, R. C. (2000). Regression and model-building in conservation biology, biogeography & ecology: The distinction & reconciliation of, predictive & explanatory models. Biodiversity and Conservation, 9, 655–671.CrossRefGoogle Scholar
  33. Mansfield, E. R., & Helms, B. P. (1982). Detecting multicollinearity. The American Statistician, 36(3), 158–160.CrossRefGoogle Scholar
  34. Montes, F., Hernández, M. J., & Cañellas, I. (2005). A geostatistical approach to cork production sampling estimation in Quercus suber forests. Canadian Journal of Forest Research, 35(12), 2787–2796.CrossRefGoogle Scholar
  35. Moore, D., & McCabe, G. (2002). Introduction to the practice of statistics. New York: Freeman.Google Scholar
  36. Odeh, I. O. A., McBratney, A. B., Chittleborough, D. J., & Cadule, P. (1994). Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geodenna, 63, 197–214.Google Scholar
  37. Oliver, M. A., & Webster, R. (2008). Geostatistics for environmental scientists. Chichester: Wiley.Google Scholar
  38. Rachina, S. (2011). Comparison of individual tree delineation methods for carbon stock estimation using very high resolution satellite images. In Natural resources management (NRM). Enschede: University of Twente (ITC).Google Scholar
  39. Ribeiro, J., & Diggle, P. J. (2001). ‘geoR: A package for geostatistical analysis. R News, 1(2), 15–18.Google Scholar
  40. Sales, H. M., Souza, M. C., Kyriakidis, P. C., Roberts, D. A., Vidal, E., & Valbuena, H. (2007). Improving spatial distribution estimation of forest biomass with geostatistics: A case study for Rondônia, Brazil. Ecological Modelling, 205(1–2), 221–230.CrossRefGoogle Scholar
  41. UNFCCC. (1998). Kyoto Protocol to the United Nations framework convention on climate change. Bonn: UNFCCC.Google Scholar
  42. Utset, A., Lopez, T., & Diaz, M. (2000). A comparison of soil maps, kriging and a combined method for spatially prediction bulk density and field capacity of Ferralsols in the Havana-Matanaz Plain. Geoderma, 96(1), 199–213.CrossRefGoogle Scholar
  43. Wang, G., Gertner, G. Z., Fang, S., Anderson, A. B., Qi, F., & Xenophorare, T. (2005). A methodology for spatial uncertainty analysis of remote sensing and GIS products. Photogrammetric Engineering & Remote Sensing, 71(12), 1423–1432.Google Scholar
  44. Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of soil properties. Journal of Soil Science, 43(1), 177–192.CrossRefGoogle Scholar
  45. Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Chichester: Wiley.Google Scholar
  46. Wells, N. A. (1994). Statistical analysis of circular data: N.I. Fisher, 1993. Cambridge University Press, Cambridge, U.K., (pp. 277). Earth-Science Reviews, 36(4), 249–250.CrossRefGoogle Scholar
  47. Wysowski, B. (2010). Mapping and estimation of carbon stock of roadside woody vegetation along roadways in eastern Overijssel, the Netherlands (p. 140). Enschede: University of Twente Faculty of Geo-Information and Earth Observation ITC.Google Scholar
  48. Yan, L., Zhou, S., Ci-fang, W., Hong-yi, L., & Feng, L. (2007). Improved prediction and reduction of sampling density for soil salinity by different geostatistical methods. Agricultural Sciences in China, 6(7), 832–841.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2013

Authors and Affiliations

  • T. S. Chinembiri
    • 1
  • M. C. Bronsveld
    • 2
  • D. G. Rossiter
    • 3
  • T. Dube
    • 4
  1. 1.Ministry of Lands and Rural ResettlementHarareZimbabwe
  2. 2.Department of Natural Resources ManagementITC Faculty of Geo-Information Science and Earth ObservationEnschedeThe Netherlands
  3. 3.Department of Applied Earth SciencesITC Faculty of Geo-Information Science and Earth ObservationEnschedeThe Netherlands
  4. 4.Department of Geography and Environmental ScienceUniversity of ZimbabweHarareZimbabwe

Personalised recommendations