Skip to main content

Advertisement

Log in

Growth Rates of Global Energy Systems and Future Outlooks

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems’ growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid ‘oil boom’-development—i.e. they mimic the most extreme historical events—their contribution to global energy supply by 2050 will be marginal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Akinlo, A. E. (2002). Energy consumption and economic growth: Evidence from 11 Sub-Sahara African countries. Energy Economics, 30, 2391–2400.

    Article  Google Scholar 

  • Aleklett, K., & Campbell, C. (2003). The peak and decline of world oil and gas production. Minerals and Energy—Raw Materials Report, 18, 5–20.

    Article  Google Scholar 

  • Aleklett, K., Höök, M., Jakobsson, K., Lardelli, M., Snowden, S., & Söderbergh, B. (2010). The peak of the oil age—analyzing the world oil production Reference Scenario in World Energy Outlook 2008. Energy Policy, 38(3), 1398–1414.

    Article  Google Scholar 

  • Al-Malood, A. M. (2004). Field manager of the Bab field in Abu-Dhabi, personal communication.

  • Amaral, L. A. N., Buldyrev, S. V., Havlin, S., Leschhorn, H., Maass, P., Salinger, M. A., et al. (1997). Scaling behavior in economics: I. Empirical results for company growth. Journal de physique, 7(4), 621–633.

    Google Scholar 

  • Amaral, L. A. N., Ghopikrishnan, P., Plerou, V., & Stanley, H. E. (2001). A model for the growth dynamics of economic organizations. Physica A: Statistical Mechanics and its Applications, 299(1–2), 127–136.

    Article  Google Scholar 

  • Axtell, R. L. (2001). Zipf distribution of U.S firm sizes. Science, 293(5536), 1818–1820.

    Article  Google Scholar 

  • Azar, C., Lindgren, K., & Andersson, B. A. (2003). Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy, 31(10), 961–976.

    Article  Google Scholar 

  • Azar, C., Lindgren, K., Larson, E., & Möllersten, K. (2006). Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Climatic Change, 74(1–3), 47–79.

    Article  Google Scholar 

  • Bartlett, A. A. (1993). Arithmetic of growth: Methods of calculation. Population and Environment, 14(4), 359–387.

    Article  Google Scholar 

  • Bartlett, A. A. (1999). Arithmetic of growth: Methods of calculation II. Population and Environment, 20(3), 215–246.

    Article  Google Scholar 

  • Bartlett, A. A. (2004). The essential exponential! For the future of our planet. Center for Science, Mathematics and Computer Education, University of Nebraska, Lincoln.

  • Bass, F. (1969). A new product growth model for consumer durables. Management Science, 15, 215–227.

    Article  Google Scholar 

  • Bezdek, R. H., & Wendling, R. M. (2002). A half century of long-range energy forecasts: Errors made, lessons learned, and implications for forecasting. Journal of Fusion Energy, 212(3–4), 155–172.

    Article  Google Scholar 

  • BP. (2010). BP statistical review of world energy 2010. http://www.bp.com. Accessed April 19, 2011.

  • Brown, M. T., & Ulgiati, S. (2002). Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production, 10(4), 321–334.

    Article  Google Scholar 

  • Buldyrev, S. V., Amaral, L. A. N., Havlin, S., Leschhorn, H., Maass, P., Salinger, M. A., et al. (1997). Scaling behavior in economics: II. Modeling of company growth. Journal de Physique, 7(4), 635–650.

    Google Scholar 

  • Bullard, C. W., Penner, P. S., & Pilati, D. A. (1978). Net energy analysis: Handbook for combining process and input-output analysis. Resources and Energy, 1, 267–313.

    Article  Google Scholar 

  • Calvin, K., Edmonds, J., Bond-Lamberty, B., Clarke, L., Kim, S. H., Kyle, P., et al. (2009). 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energy Economics, 31(Supplement 2), S107–S120.

    Article  Google Scholar 

  • Campbell, C., & Laherrere, J. (1998, March). The end of cheap oil. Scientific American.

  • Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.

    Article  Google Scholar 

  • Cleveland, C. J. (1992). Energy quality and energy surplus in the extraction of fossil fuels in the U.S. Ecological Economics, 6(2), 139–162.

    Article  Google Scholar 

  • Cleveland, C. J. (2005). Net energy from the extraction of oil and gas in the United States. Energy, 30(5), 769–782.

    Article  Google Scholar 

  • Cleveland, C. J., Costanza, R., Hall, C. A. S., & Kaufmann, R. (1984). Energy and the United States economy: A biophysical perspective. Science, 225(4665), 890–897.

    Article  Google Scholar 

  • Cotrell, W. F. (1955). Energy and society: The relation between energy, social change, and economic development. New York: McGraw-Hill.

    Google Scholar 

  • de Castro, C., Miguel, L. J., & Mediavilla, M. (2009). The role of nonconventional oil in the attenuation of peak oil. Energy Policy, 37(5), 1825–1833.

    Article  Google Scholar 

  • Farrell-Grey, C. C., & Gotelli, N. J. (2005). Allometric exponents support a 3/4-power scaling law. Ecology, 86(8), 2083–2087.

    Article  Google Scholar 

  • Friedrichs, J. (2010). Global energy crunch: How different parts of the world would react to a peak oil scenario. Energy Policy, 38(8), 4562–4569.

    Article  Google Scholar 

  • Fu, D., Pamolli, F., Buldyrev, S. V., Riccaboni, M., Matia, K., Yamasaki, K., et al. (2005). The growth of business firms: Theoretical framework and empirical evidence. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 18801–18806.

    Article  Google Scholar 

  • Gately, M. (2007). The EROI of U.S. offshore energy extraction: A net energy analysis of the Gulf of Mexico. Ecological Economics, 63, 355–364.

    Article  Google Scholar 

  • Green, M. B. (1978). Eating oil: Energy use in food production. Boulder: Westview Press.

    Google Scholar 

  • Grübler, A., Nakicenovic, N., & Victor, D. G. (1999). Dynamics of energy technologies and global change. Energy Policy, 27(5), 247–280.

    Article  Google Scholar 

  • Häfele, W., & Sassin, W. (1977). The global energy system. Annual Review of Energy, 2, 1–30.

    Article  Google Scholar 

  • Hondroyiannis, G., Lolos, S., & Papapetrou, E. (2002). Energy consumption and economic growth: Assessing the evidence from Greece. Energy Economics, 24(4), 319–336.

    Article  Google Scholar 

  • Höök, M. (2010). Coal and oil: The dark monarchs of global energy: understanding supply and extraction patterns and their importance for future production. Doctoral thesis from Uppsala University. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-129295. Accessed April 12, 2011.

  • Höök, M., & Aleklett, K. (2009). Historical trends in American coal production and a possible future outlook. International Journal of Coal Geology, 78(3), 201–216.

    Article  Google Scholar 

  • Höök, M., & Aleklett, K. (2010). Trends in U.S. recoverable coal supply estimates and future production outlooks. Natural Resources Research, 19(3), 189–209.

    Article  Google Scholar 

  • Höök, M., Hirsch, R., & Aleklett, K. (2009). Giant oil field decline rates and their influence on world oil production. Energy Policy, 37(6), 2262–2272.

    Article  Google Scholar 

  • Höök, M., Li, J., Oba, N., & Snowden, S. (2011). Descriptive and predictive growth curves in energy system analysis. Natural Resources Research, 20(2), 103–116.

    Article  Google Scholar 

  • Höök, M., Sivertsson, A., & Aleklett, K. (2010). Validity of the fossil fuel production outlooks in the IPCC Emission Scenarios. Natural Resources Research, 19(2), 63–81.

    Article  Google Scholar 

  • Hubbert, M. K. (1956). Nuclear energy and the fossil fuels. Presented before the Spring Meeting of the Southern District, American Petroleum Institute, Plaza Hotel, San Antonio, Texas, March 7–9, http://www.hubbertpeak.com/Hubbert/1956/1956.pdf. Accessed April 19, 2011.

  • Hubbert, M. K. (1974). The nature of growth. Testimony to Hearing on the National Energy Conservation Policy Act of 1974, hearings before the Subcommittee on the Environment of the committee on Interior and Insular Affairs House of Representatives, June 6, 1974, http://www.energybulletin.net/node/3845. Accessed April 19, 2011.

  • Hubbert, M. K. (1982). Response to David Nissens remarks. http://www.hubbertpeak.com/Hubbert/to_nissen.htm. Accessed April 19, 2011.

  • IEA. (2007). Renewables in global energy supplyan IEA fact sheet. http://www.iea.org/textbase/papers/2006/renewable_factsheet.pdf. Accessed April 18, 2011.

  • IEA. (2008). World energy outlook 2008. http://www.worldenergyoutlook.com. Accessed April 19, 2011.

  • IEA. (2010). Statistics and balances. http://www.iea.org/Textbase/stats/index.asp. Accessed April 19, 2011.

  • Ion, D. C. (1975). Availability of World Energy Resources. London: Graham & Trotman Ltd.

    Google Scholar 

  • Ion, D. C. (1979). World energy supplies. Proceedings of the Geologists’ Association, 90(4), 193–202.

    Article  Google Scholar 

  • Jenkins, G. (1989). Oil economists’ handbook. London: Taylor & Francis Group. 484.

    Google Scholar 

  • Jevons, W. S. (1866). The Coal Question: An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of Our Coal-Mines. London: Macmillan and Company.

    Google Scholar 

  • Johansson, K., Liljequist, K., Ohlander, L., & Aleklett, K. (2010). Agriculture as provider of both food and fuel. Ambio, 39(2), 91–99.

    Article  Google Scholar 

  • Kaizoji, T. (2003). Scaling behavior in land markets. Physica A: Statistical Mechanics and its Applications, 326(1–2), 256–264.

    Article  Google Scholar 

  • Kubiszewski, I., Cleveland, C., & Endres, P. (2009). Meta-analysis of net energy return for wind power systems. Renewable Energy, 35(1), 218–225.

    Article  Google Scholar 

  • Learch, G. (1975). Net energy analysis—is it any use? Energy Policy, 3, 332–344.

    Article  Google Scholar 

  • Malthus, T. (1798). An essay on the principle of population or a view of its past and present effects on human happiness; with an inquiry into our prospects respecting the future removal or mitigation of the evils which it occasions. London: Penguin Classics.

    Google Scholar 

  • Martin, H. G., & Goldenfeld, N. (2006). On the origin and robustness of power-law species–area relationships in ecology. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10310–10315.

    Article  Google Scholar 

  • Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. (1972). The limits to growth. New York: Universe Books. 205.

    Google Scholar 

  • Milne, B. T., Gupta, V. K., & Restrepo, C. (2002). A scale invariant coupling of plants, water, energy, and terrain. Ecoscience, 9(2), 191–199.

    Google Scholar 

  • Mitchell, B. (2003). International historical statistics 1750–2000. London: Palgrave MacMillan.

    Google Scholar 

  • Moriatry, P., & Honnery, D. (2009). What energy levels can the Earth sustain? Energy Policy, 37(7), 2469–2474.

    Article  Google Scholar 

  • Odell, P. R. (1999). Dynamics of energy technologies and global change. Energy Policy, 27(12), 737–742.

    Article  Google Scholar 

  • Odum, H. T. (1971). Environment, power and society. New York: Wiley.

    Google Scholar 

  • Payne, J. E. (2010a). Survey of the international evidence on the causal relationship between energy consumption and growth. Journal of Economic Studies, 37(1), 53–95.

    Article  Google Scholar 

  • Payne, J. E. (2010b). A survey of the electricity consumption-growth literature. Applied Energy, 87(3), 723–731.

    Article  Google Scholar 

  • Pfieffer, D. A. (2006). Eating fossil fuels: Oil food and the coming crisis in agriculture. Gabriola Island: New Society Publishers.

    Google Scholar 

  • Pimentel, D. (2007). Food, energy, and society. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Pimentel, D., Hurd, L. E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., et al. (1973). Food production and the energy crisis. Science, 182(4111), 443–449.

    Article  Google Scholar 

  • Prieto, P. (2008). Solar + wind in Spain/World. Closing the growing gap? Presentation held at the international ASPO 7 conference, World Trade Center, Barcelona, October 20–21, 2008. http://www.aspo-spain.org/aspo7/presentations/Prieto-SolarWind-ASPO7.pdf. Accessed April 18, 2011.

  • RFE. (2010). 2010 Ethanol industry outlookclimate of opportunity. Report from Renewable Fuels Association. http://foodnfuel.3cdn.net/32b7ed69bd366321cb_r1m626lb0.pdf. Accessed April 18, 2011.

  • Richards, F. J. (1959). A flexible growth curve for empirical use. Journal of Experimental Botany, 10(2), 290–301.

    Article  Google Scholar 

  • Rotty, R. M. (1979). Growth in global energy demand and contribution of alternative supply systems. Energy, 4(5), 881–890.

    Article  Google Scholar 

  • Schlesinger, J., & Hirsch, R. L. (2009). Getting real on wind and solar. Washington Post, published on April 24, 2009. http://www.washingtonpost.com/wp-dyn/content/article/2009/04/23/AR2009042303809.html. Accessed April 18, 2011.

  • Shell. (2008). Shell energy scenarios to 2050. http://www.shell.com/scenarios/. Accessed April 18, 2011.

  • Smil, V. (2000). Perils of long-range energy forecasting: reflections on looking far ahead. Technological Forecasting and Social Change, 65(3), 251–264.

    Article  Google Scholar 

  • Spreng, D. T. (1988). Net energy analysis and the energy requirements of energy systems. New York: Praeger Press.

    Google Scholar 

  • SRES. (2000). IPCC special report on emission scenarios. http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission/. Accessed April 18, 2011.

  • Stanley, H. E. (1995). Power laws and universality. Nature, 378(6557), 554.

    Article  Google Scholar 

  • Stanley, M. H. R., Amaral, L. A. N., Buldyrev, S. V., Havlin, S., Leschhorn, H., Maass, P., et al. (1996). Scaling behavior in the growth of companies. Nature, 379, 804–806.

    Article  Google Scholar 

  • Stern, D. I., & Cleveland, C. J. (2004). Energy and economic growth. Rensselaer Working Papers in Economics, Number 0410, 1-42, http://www.economics.rpi.edu/workingpapers/rpi0410.pdf. Accessed April 18, 2011.

  • Taylor, L. R., Perry, J. N., Woiwod, I. P., & Taylor, R. A. J. (1988). Specificity of the spatial power-law exponent in ecology and agriculture. Nature, 332, 721–722.

    Article  Google Scholar 

  • Turner, G. M. (2008). A comparison of the limits to growth with 30 years of reality. Global Environmental Change, 18(3), 397–411.

    Article  Google Scholar 

  • UKERC. (2009). Global oil depletion: An assessment of the evidence for a near-term peak in global oil production. London: UK Energy Research Centre. http://www.ukerc.ac.uk/support/Global%20Oil%20Depletion.

  • Van Ruijven, B., van Vuuren, D. P., & de Vries, B. (2007). The potential role of hydrogen in energy systems with and without climate policy. International Journal of Hydrogen Energy, 32(12), 1655–1672.

    Article  Google Scholar 

  • Verne, J. (1864). A journey to the centre of the earth. New York: Signet Classic.

    Google Scholar 

  • West, G. B., & Brown, J. H. (2004). Life’s universal scaling laws. Physics today, 57(9), 36–42.

    Article  Google Scholar 

  • West, G. B., & Brown, J. H. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization. Journal of Experimental Biology, 208(9), 1575–1592.

    Article  Google Scholar 

  • West, G. B., Woodruff, W. H., & Brown, J. H. (2002). Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proceedings of the National Academy of Sciences of the United States of America, 99, 2473–2478.

    Article  Google Scholar 

  • WETO. (2006). World energy technology outlook 2050. http://www.globalbioenergy.org/. Accessed April 18, 2011.

  • World Wind Energy Association. (2010). World wind energy report 2009. http://www.wwindea.org/. Accessed April 18, 2011.

Download references

Acknowledgments

This study has been supported by the STandUP for energy collaboration initiative. We would like to thank Sergey Yachenkov at the Kurchatov Institute in Moscow for constructive discussions. Professor Al Bartlett has our appreciation for being an important source of inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Höök.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höök, M., Li, J., Johansson, K. et al. Growth Rates of Global Energy Systems and Future Outlooks. Nat Resour Res 21, 23–41 (2012). https://doi.org/10.1007/s11053-011-9162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-011-9162-0

Keywords

Navigation