Natural Resources Research

, Volume 21, Issue 1, pp 23–41 | Cite as

Growth Rates of Global Energy Systems and Future Outlooks

  • Mikael Höök
  • Junchen Li
  • Kersti Johansson
  • Simon Snowden


The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems’ growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid ‘oil boom’-development—i.e. they mimic the most extreme historical events—their contribution to global energy supply by 2050 will be marginal.


global energy systems growth rates energy forecasting scenarios long-term forecasting evaluating forecasts 



This study has been supported by the STandUP for energy collaboration initiative. We would like to thank Sergey Yachenkov at the Kurchatov Institute in Moscow for constructive discussions. Professor Al Bartlett has our appreciation for being an important source of inspiration.


  1. Akinlo, A. E. (2002). Energy consumption and economic growth: Evidence from 11 Sub-Sahara African countries. Energy Economics, 30, 2391–2400.CrossRefGoogle Scholar
  2. Aleklett, K., & Campbell, C. (2003). The peak and decline of world oil and gas production. Minerals and Energy—Raw Materials Report, 18, 5–20.CrossRefGoogle Scholar
  3. Aleklett, K., Höök, M., Jakobsson, K., Lardelli, M., Snowden, S., & Söderbergh, B. (2010). The peak of the oil age—analyzing the world oil production Reference Scenario in World Energy Outlook 2008. Energy Policy, 38(3), 1398–1414.CrossRefGoogle Scholar
  4. Al-Malood, A. M. (2004). Field manager of the Bab field in Abu-Dhabi, personal communication.Google Scholar
  5. Amaral, L. A. N., Buldyrev, S. V., Havlin, S., Leschhorn, H., Maass, P., Salinger, M. A., et al. (1997). Scaling behavior in economics: I. Empirical results for company growth. Journal de physique, 7(4), 621–633.Google Scholar
  6. Amaral, L. A. N., Ghopikrishnan, P., Plerou, V., & Stanley, H. E. (2001). A model for the growth dynamics of economic organizations. Physica A: Statistical Mechanics and its Applications, 299(1–2), 127–136.CrossRefGoogle Scholar
  7. Axtell, R. L. (2001). Zipf distribution of U.S firm sizes. Science, 293(5536), 1818–1820.CrossRefGoogle Scholar
  8. Azar, C., Lindgren, K., & Andersson, B. A. (2003). Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy, 31(10), 961–976.CrossRefGoogle Scholar
  9. Azar, C., Lindgren, K., Larson, E., & Möllersten, K. (2006). Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Climatic Change, 74(1–3), 47–79.CrossRefGoogle Scholar
  10. Bartlett, A. A. (1993). Arithmetic of growth: Methods of calculation. Population and Environment, 14(4), 359–387.CrossRefGoogle Scholar
  11. Bartlett, A. A. (1999). Arithmetic of growth: Methods of calculation II. Population and Environment, 20(3), 215–246.CrossRefGoogle Scholar
  12. Bartlett, A. A. (2004). The essential exponential! For the future of our planet. Center for Science, Mathematics and Computer Education, University of Nebraska, Lincoln.Google Scholar
  13. Bass, F. (1969). A new product growth model for consumer durables. Management Science, 15, 215–227.CrossRefGoogle Scholar
  14. Bezdek, R. H., & Wendling, R. M. (2002). A half century of long-range energy forecasts: Errors made, lessons learned, and implications for forecasting. Journal of Fusion Energy, 212(3–4), 155–172.CrossRefGoogle Scholar
  15. BP. (2010). BP statistical review of world energy 2010. Accessed April 19, 2011.
  16. Brown, M. T., & Ulgiati, S. (2002). Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production, 10(4), 321–334.CrossRefGoogle Scholar
  17. Buldyrev, S. V., Amaral, L. A. N., Havlin, S., Leschhorn, H., Maass, P., Salinger, M. A., et al. (1997). Scaling behavior in economics: II. Modeling of company growth. Journal de Physique, 7(4), 635–650.Google Scholar
  18. Bullard, C. W., Penner, P. S., & Pilati, D. A. (1978). Net energy analysis: Handbook for combining process and input-output analysis. Resources and Energy, 1, 267–313.CrossRefGoogle Scholar
  19. Calvin, K., Edmonds, J., Bond-Lamberty, B., Clarke, L., Kim, S. H., Kyle, P., et al. (2009). 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energy Economics, 31(Supplement 2), S107–S120.CrossRefGoogle Scholar
  20. Campbell, C., & Laherrere, J. (1998, March). The end of cheap oil. Scientific American.Google Scholar
  21. Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.CrossRefGoogle Scholar
  22. Cleveland, C. J. (1992). Energy quality and energy surplus in the extraction of fossil fuels in the U.S. Ecological Economics, 6(2), 139–162.CrossRefGoogle Scholar
  23. Cleveland, C. J. (2005). Net energy from the extraction of oil and gas in the United States. Energy, 30(5), 769–782.CrossRefGoogle Scholar
  24. Cleveland, C. J., Costanza, R., Hall, C. A. S., & Kaufmann, R. (1984). Energy and the United States economy: A biophysical perspective. Science, 225(4665), 890–897.CrossRefGoogle Scholar
  25. Cotrell, W. F. (1955). Energy and society: The relation between energy, social change, and economic development. New York: McGraw-Hill.Google Scholar
  26. de Castro, C., Miguel, L. J., & Mediavilla, M. (2009). The role of nonconventional oil in the attenuation of peak oil. Energy Policy, 37(5), 1825–1833.CrossRefGoogle Scholar
  27. Farrell-Grey, C. C., & Gotelli, N. J. (2005). Allometric exponents support a 3/4-power scaling law. Ecology, 86(8), 2083–2087.CrossRefGoogle Scholar
  28. Friedrichs, J. (2010). Global energy crunch: How different parts of the world would react to a peak oil scenario. Energy Policy, 38(8), 4562–4569.CrossRefGoogle Scholar
  29. Fu, D., Pamolli, F., Buldyrev, S. V., Riccaboni, M., Matia, K., Yamasaki, K., et al. (2005). The growth of business firms: Theoretical framework and empirical evidence. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 18801–18806.CrossRefGoogle Scholar
  30. Gately, M. (2007). The EROI of U.S. offshore energy extraction: A net energy analysis of the Gulf of Mexico. Ecological Economics, 63, 355–364.CrossRefGoogle Scholar
  31. Green, M. B. (1978). Eating oil: Energy use in food production. Boulder: Westview Press.Google Scholar
  32. Grübler, A., Nakicenovic, N., & Victor, D. G. (1999). Dynamics of energy technologies and global change. Energy Policy, 27(5), 247–280.CrossRefGoogle Scholar
  33. Häfele, W., & Sassin, W. (1977). The global energy system. Annual Review of Energy, 2, 1–30.CrossRefGoogle Scholar
  34. Hondroyiannis, G., Lolos, S., & Papapetrou, E. (2002). Energy consumption and economic growth: Assessing the evidence from Greece. Energy Economics, 24(4), 319–336.CrossRefGoogle Scholar
  35. Höök, M. (2010). Coal and oil: The dark monarchs of global energy: understanding supply and extraction patterns and their importance for future production. Doctoral thesis from Uppsala University. Accessed April 12, 2011.
  36. Höök, M., & Aleklett, K. (2009). Historical trends in American coal production and a possible future outlook. International Journal of Coal Geology, 78(3), 201–216.CrossRefGoogle Scholar
  37. Höök, M., & Aleklett, K. (2010). Trends in U.S. recoverable coal supply estimates and future production outlooks. Natural Resources Research, 19(3), 189–209.CrossRefGoogle Scholar
  38. Höök, M., Hirsch, R., & Aleklett, K. (2009). Giant oil field decline rates and their influence on world oil production. Energy Policy, 37(6), 2262–2272.CrossRefGoogle Scholar
  39. Höök, M., Li, J., Oba, N., & Snowden, S. (2011). Descriptive and predictive growth curves in energy system analysis. Natural Resources Research, 20(2), 103–116.CrossRefGoogle Scholar
  40. Höök, M., Sivertsson, A., & Aleklett, K. (2010). Validity of the fossil fuel production outlooks in the IPCC Emission Scenarios. Natural Resources Research, 19(2), 63–81.CrossRefGoogle Scholar
  41. Hubbert, M. K. (1956). Nuclear energy and the fossil fuels. Presented before the Spring Meeting of the Southern District, American Petroleum Institute, Plaza Hotel, San Antonio, Texas, March 7–9, Accessed April 19, 2011.
  42. Hubbert, M. K. (1974). The nature of growth. Testimony to Hearing on the National Energy Conservation Policy Act of 1974, hearings before the Subcommittee on the Environment of the committee on Interior and Insular Affairs House of Representatives, June 6, 1974, Accessed April 19, 2011.
  43. Hubbert, M. K. (1982). Response to David Nissens remarks. Accessed April 19, 2011.
  44. IEA. (2007). Renewables in global energy supplyan IEA fact sheet. Accessed April 18, 2011.
  45. IEA. (2008). World energy outlook 2008. Accessed April 19, 2011.
  46. IEA. (2010). Statistics and balances. Accessed April 19, 2011.
  47. Ion, D. C. (1975). Availability of World Energy Resources. London: Graham & Trotman Ltd.Google Scholar
  48. Ion, D. C. (1979). World energy supplies. Proceedings of the Geologists’ Association, 90(4), 193–202.CrossRefGoogle Scholar
  49. Jenkins, G. (1989). Oil economists’ handbook. London: Taylor & Francis Group. 484.Google Scholar
  50. Jevons, W. S. (1866). The Coal Question: An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of Our Coal-Mines. London: Macmillan and Company.Google Scholar
  51. Johansson, K., Liljequist, K., Ohlander, L., & Aleklett, K. (2010). Agriculture as provider of both food and fuel. Ambio, 39(2), 91–99.CrossRefGoogle Scholar
  52. Kaizoji, T. (2003). Scaling behavior in land markets. Physica A: Statistical Mechanics and its Applications, 326(1–2), 256–264.CrossRefGoogle Scholar
  53. Kubiszewski, I., Cleveland, C., & Endres, P. (2009). Meta-analysis of net energy return for wind power systems. Renewable Energy, 35(1), 218–225.CrossRefGoogle Scholar
  54. Learch, G. (1975). Net energy analysis—is it any use? Energy Policy, 3, 332–344.CrossRefGoogle Scholar
  55. Malthus, T. (1798). An essay on the principle of population or a view of its past and present effects on human happiness; with an inquiry into our prospects respecting the future removal or mitigation of the evils which it occasions. London: Penguin Classics.Google Scholar
  56. Martin, H. G., & Goldenfeld, N. (2006). On the origin and robustness of power-law species–area relationships in ecology. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10310–10315.CrossRefGoogle Scholar
  57. Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. (1972). The limits to growth. New York: Universe Books. 205.Google Scholar
  58. Milne, B. T., Gupta, V. K., & Restrepo, C. (2002). A scale invariant coupling of plants, water, energy, and terrain. Ecoscience, 9(2), 191–199.Google Scholar
  59. Mitchell, B. (2003). International historical statistics 1750–2000. London: Palgrave MacMillan.Google Scholar
  60. Moriatry, P., & Honnery, D. (2009). What energy levels can the Earth sustain? Energy Policy, 37(7), 2469–2474.CrossRefGoogle Scholar
  61. Odell, P. R. (1999). Dynamics of energy technologies and global change. Energy Policy, 27(12), 737–742.CrossRefGoogle Scholar
  62. Odum, H. T. (1971). Environment, power and society. New York: Wiley.Google Scholar
  63. Payne, J. E. (2010a). Survey of the international evidence on the causal relationship between energy consumption and growth. Journal of Economic Studies, 37(1), 53–95.CrossRefGoogle Scholar
  64. Payne, J. E. (2010b). A survey of the electricity consumption-growth literature. Applied Energy, 87(3), 723–731.CrossRefGoogle Scholar
  65. Pfieffer, D. A. (2006). Eating fossil fuels: Oil food and the coming crisis in agriculture. Gabriola Island: New Society Publishers.Google Scholar
  66. Pimentel, D. (2007). Food, energy, and society. Boca Raton: CRC Press.CrossRefGoogle Scholar
  67. Pimentel, D., Hurd, L. E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., et al. (1973). Food production and the energy crisis. Science, 182(4111), 443–449.CrossRefGoogle Scholar
  68. Prieto, P. (2008). Solar + wind in Spain/World. Closing the growing gap? Presentation held at the international ASPO 7 conference, World Trade Center, Barcelona, October 20–21, 2008. Accessed April 18, 2011.
  69. RFE. (2010). 2010 Ethanol industry outlookclimate of opportunity. Report from Renewable Fuels Association. Accessed April 18, 2011.
  70. Richards, F. J. (1959). A flexible growth curve for empirical use. Journal of Experimental Botany, 10(2), 290–301.CrossRefGoogle Scholar
  71. Rotty, R. M. (1979). Growth in global energy demand and contribution of alternative supply systems. Energy, 4(5), 881–890.CrossRefGoogle Scholar
  72. Schlesinger, J., & Hirsch, R. L. (2009). Getting real on wind and solar. Washington Post, published on April 24, 2009. Accessed April 18, 2011.
  73. Shell. (2008). Shell energy scenarios to 2050. Accessed April 18, 2011.
  74. Smil, V. (2000). Perils of long-range energy forecasting: reflections on looking far ahead. Technological Forecasting and Social Change, 65(3), 251–264.CrossRefGoogle Scholar
  75. Spreng, D. T. (1988). Net energy analysis and the energy requirements of energy systems. New York: Praeger Press.Google Scholar
  76. SRES. (2000). IPCC special report on emission scenarios. Accessed April 18, 2011.
  77. Stanley, H. E. (1995). Power laws and universality. Nature, 378(6557), 554.CrossRefGoogle Scholar
  78. Stanley, M. H. R., Amaral, L. A. N., Buldyrev, S. V., Havlin, S., Leschhorn, H., Maass, P., et al. (1996). Scaling behavior in the growth of companies. Nature, 379, 804–806.CrossRefGoogle Scholar
  79. Stern, D. I., & Cleveland, C. J. (2004). Energy and economic growth. Rensselaer Working Papers in Economics, Number 0410, 1-42, Accessed April 18, 2011.
  80. Taylor, L. R., Perry, J. N., Woiwod, I. P., & Taylor, R. A. J. (1988). Specificity of the spatial power-law exponent in ecology and agriculture. Nature, 332, 721–722.CrossRefGoogle Scholar
  81. Turner, G. M. (2008). A comparison of the limits to growth with 30 years of reality. Global Environmental Change, 18(3), 397–411.CrossRefGoogle Scholar
  82. UKERC. (2009). Global oil depletion: An assessment of the evidence for a near-term peak in global oil production. London: UK Energy Research Centre.
  83. Van Ruijven, B., van Vuuren, D. P., & de Vries, B. (2007). The potential role of hydrogen in energy systems with and without climate policy. International Journal of Hydrogen Energy, 32(12), 1655–1672.CrossRefGoogle Scholar
  84. Verne, J. (1864). A journey to the centre of the earth. New York: Signet Classic.Google Scholar
  85. West, G. B., & Brown, J. H. (2004). Life’s universal scaling laws. Physics today, 57(9), 36–42.CrossRefGoogle Scholar
  86. West, G. B., & Brown, J. H. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization. Journal of Experimental Biology, 208(9), 1575–1592.CrossRefGoogle Scholar
  87. West, G. B., Woodruff, W. H., & Brown, J. H. (2002). Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proceedings of the National Academy of Sciences of the United States of America, 99, 2473–2478.CrossRefGoogle Scholar
  88. WETO. (2006). World energy technology outlook 2050. Accessed April 18, 2011.
  89. World Wind Energy Association. (2010). World wind energy report 2009. Accessed April 18, 2011.

Copyright information

© International Association for Mathematical Geology 2011

Authors and Affiliations

  • Mikael Höök
    • 1
  • Junchen Li
    • 2
  • Kersti Johansson
    • 1
  • Simon Snowden
    • 3
  1. 1.Department of Physics and Astronomy, Global Energy SystemsUppsala UniversityUppsalaSweden
  2. 2.School of Business AdministrationChina University of Petroleum—BeijingBeijingChina
  3. 3.Management SchoolUniversity of LiverpoolLiverpoolUK

Personalised recommendations