Natural Resources Research

, Volume 19, Issue 3, pp 177–188 | Cite as

High Potential Regions for Enhanced Geothermal Systems in Canada

  • Jacek MajorowiczEmail author
  • Stephen E. Grasby


Previous estimates of geothermal energy potential in Canada give an indication of available heat to be ‘farmed’ at depth. This article examines in more detail depth–temperature relationships near large population centers in western Canada, as well as remote communities in northern Canada, in order to provide a first order assessment of Enhanced Geothermal Systems (EGS) potential for electrical generation. Quantities of EGS thermal power output and electrical generation are dependent on output temperature and flow rate. We relate these potential power rates as a whole to drilling and installation cost for the doublet systems and triplet system. Results show areas with significant EGS potential in northern Alberta, northeastern British Columbia, and southern Northwest Territories related to high heat flow and thermal blanketing of thick sedimentary cover. Estimated installation costs in 2008 dollars are under 2 mln$/MWe. We also estimate significant reductions in CO2 emissions by conversion to geothermal electric production.


Geothermal energy Canadian geothermal EGS heat flow 



Dr. Michal Moore is thanked for introducing us to the EGS theme. We would like to thank the anonymous reviewers for their helpful comments. We would like to thank Dr. Alan Jessop for his valuable comments and numerous improvements in the text. Geological Survey of Canada Contribution.


  1. Barbier, E., 2002, Geothermal energy technology and current status an overview: Renew. Sustain. Energy Rev., v. 6, p. 3–65.CrossRefGoogle Scholar
  2. Beach, R. D. W., Jones, F. W., and Majorowicz, J. A., 1987, Heat flow and heat generation estimates for the Churchill basement of the Western Canadian Basin in Alberta, Canada: Geothermics, v. 16, no. 1, p. 1–16.CrossRefGoogle Scholar
  3. Blackwell, D. D., 2007, Geothermal resource base assessment, in Future of Geothermal Energy—Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. An Assessment by an MIT Led Interdisciplinary Panel.
  4. Blackwell, D. D., and Richards, M., eds., 2004, Heat flow map of North America.
  5. Burwash, R. A., and Burwash, R. W., 1989, A radioactive heat generation map for the subsurface Precambrian of Alberta. GSC Current Research C Paper 89-1C, p. 363–368.Google Scholar
  6. Dixon, J., Dietrich, J. R., Snowdon, L. R., Morrell, G. R., and McNeil, D. H., 1992, Geology and petroleum potential of Upper Cretaceous and Tertiary strata, Beaufort-Mackenzie area, Northwest Canada: AAPG Bull., v. 76, p. 927–947. Google Scholar
  7. Drury, M., 1988, Tectonothermics of the North American Great Plains basement: Tectonophysics, v. 148, p. 299–307.CrossRefGoogle Scholar
  8. Genter, A., Fritsch, D., Cuenot, N., Baumgartner, J., and Graff, J., 2009, Overview of the current activities of the European EGS Soultz project: From exploration to electricity production; 34th Workshop on geothermal reservoir Engineering, Stanford Univ., SGP-TR-187.Google Scholar
  9. Gosnold, Jr., W. D., 1999, Stratabound geothermal resources of North Dakota and South Dakota: Nat. Resour. Res., v. 8, p. 177–192.CrossRefGoogle Scholar
  10. Gosnold, Jr., W. D., LeFever, R., Chu, M., Crashell, J., and Brekke, J., 1990, Stratabound geothermal resources in the northern Great Plains: Geotherm. Resour. Council, v. 14, no. 1–2, p. 675–681.Google Scholar
  11. Grasby, S. E., Majorowicz, J., and Ko, M., 2009, Geothermal maps of Canada: Geological Survey of Canada Open File 6167.Google Scholar
  12. Jessop, A. M., Allen, V. S., Bentkowski, W., Burgess, M., Drury, M., Judge, A. S., Lewis, T., Majorowicz, J., Mareschal, J. C., and Taylor, A. E., 2005, The Canadian geothermal data compilation: Geological Survey of Canada, Open File 4887.Google Scholar
  13. Jessop, A. M., Lewis, T. J., Judge, A. S., Taylor, A. E., and Drury, M. J., 1984, Terrestrial heat flow in Canada: Tectonophysics, v. 103, p. 239–261.CrossRefGoogle Scholar
  14. Jessop, A. M., 1992, Thermal input from the basement of the Western Canada Sedimentary Basin: Bull. Can. Petr. Geol., v. 40, no. 3, p. 198–206.Google Scholar
  15. Jessop, A. M., 1990, Thermal geophysics: Dev. Solid Earth Geophys., v. 17, p. 306.Google Scholar
  16. Jones, F. W., and Majorowicz, J. A., 1987, Regional trends in radiogenic heat generation in the Precambrian basement of the Western Canadian Basin: Geophys. Res. Lett., v. 14, no. 3, p. 268–271.CrossRefGoogle Scholar
  17. Lachenbruch, A. H., 1970, Crustal temperatures and heat production: implications of the linear heat-flow relation: J. Geophys. Res., v. 75, no. 17, p. 3291–3300.CrossRefGoogle Scholar
  18. Lachenbruch, A. H., 1971, Vertical gradients of heat production in the continental crust. 1. Theoretical detectability from near-surface measurements: J. Geophys. Res., v. 76, no. 17, p. 3842–3860.CrossRefGoogle Scholar
  19. Majorowicz, J. A., Garven, G., Jessop, A., and Jessop, C., 1999, Present heat flow along a profile across the Western Canada Sedimentary Basin: the extent of hydrodynamic influence, in Foster, A., and Merriam, D., eds., Geothermics in Basin Analysis. Computer Applications in the Earth Sciences: Kluwer Academic/Plenum Publishers, Dordrecht/NY, p. 61–80.Google Scholar
  20. Majorowicz, J. A., and Grasby, S. E., 2010, Heat flow, depth – temperature variations and stored thermal energy for enhanced geothermal systems (EGS) in Canada: IOP. J. Geophys. Eng., v. 7, p. 1–10.Google Scholar
  21. Majorowicz, J. A., Grasby, S., and Skinner, W., 2009, Estimation of shallow geothermal energy resource in Canada—heat gain and heat sink: Nat. Resour. Res., Springer. doi: 10.1007/s11053-009-9090-4.
  22. Majorowicz, J. A., Jessop, A. M., and Judge, A. S., 1996, Geothermal regime, in Dixon, J., ed., Geological Atlas of the Beufort-Mackenzie Area: Geological Survey of Canada, Report 59, Natural Resources, Canada, p. 33–37.Google Scholar
  23. Majorowicz, J. A., Jones, F. W., and Jessop, A. M., 1988, Preliminary geothermics of the sedimentary basins in the Yukon and Northwest Territories (60–70 N)-estimates from petroleum bottom-hole temperature data: CSPG Bull., v. 36, p. 39–51.Google Scholar
  24. Majorowicz, J. A., Jones, F. W., and Jessop, A. M., 1985, Terrestrial heat flow and geothermal gradients in relation to hydrodynamics in the Alberta basin, Canada: J. Geodynamics, v. 2, p. 265–283.CrossRefGoogle Scholar
  25. Majorowicz, J. A., and Moore, M., 2008, Enhanced Geothermal Systems (EGS) potential in the Alberta Basin.
  26. Majorowicz, J. A., and Embry, A., 1998, Present heat flow and paleogeothermal regime in the Canadian Arctic margin—analysis of industrial thermal data and coalification gradients, in Cermak, V., ed., Heat Flow and Structure of the Lithosphere, Tectonophysics, v. 291, p. 141–159.Google Scholar
  27. Pollack, H. N., and Chapman, D., 1977, Mantle heat flow: Earth Planet. Sci. Lett., v. 34, p. 174–184.CrossRefGoogle Scholar
  28. Smith, S. L., and Burgess, M., 1998, Mapping the response of permafrost in Canada to climate warming: Geological Survey of Canada Current Research, 1998-E, p. 163–171. The Canadian Centre for Energy Information 2007.Google Scholar
  29. Tester, J. W., Anderson, B. J., Batchelor, A. S., Blackwell, D. D., DiPippo, R., Drake, E. M., Garnish, J., Livesay, B., Moore, M. C., Nichols, K., Petty, S., Toksöz, M. N., Shrock, R. R., and Veatch, R. W., 2006, The future of geothermal energy, the impact of Enhanced Geothermal Systems on the United States in the 21st century: MIT Press, Cambridge, MA.Google Scholar

Copyright information

© International Association for Mathematical Geology 2010

Authors and Affiliations

  1. 1.NGC EdmontonEdmontonCanada
  2. 2.Department of Geology and Geological EngineeringUNDGrand ForksUSA
  3. 3.Geological Survey of CanadaCalgaryCanada

Personalised recommendations