Stable Isotopes (O, H, and S) in the Muteh Gold Deposit, Golpaygan Area, Iran

  • M. J. AbdollahiEmail author
  • M. H. Karimpour
  • A. Kheradmand
  • A. R. Zarasvandi


The Muteh gold district with nine gold deposits is located in the Sanandaj-Sirjan metamorphic zone. Gold mineralization occurs in a pre-Permian complex which mainly consists of green schists, meta-volcanics, and gneiss rocks. Shear zones are the host of gold mineralization. Gold paragenesis minerals include pyrite, chalcopyrite, pyrrhotite, and secondary minerals. Pyrites occur as pre-, syn-, and post-metamorphism minerals. To determine the source of the ore-bearing fluids, fifty samples were selected for petrographical and stable isotope studies. The mean values of 12.4‰, and −42‰ for δ18O and δD isotopes, respectively, and a mean value of 7.75‰ of calculated fractionation factors for δ18O H2O, from quartz veins indicate that metamorphic host rocks are the most important source for the fluids and gold mineralization. Three generations of pyrite can be distinguished showing a wide range of δ34S. Gold mineralization is closely associated with intense hydrothermal alteration along the ductile shear zones. The characteristics of the gold mineralization in the study area are similar to those of orogenic gold deposits elsewhere.


Gold deposit Muteh isotope metamorphic zone pyrite quartz veins Sanandaj–Sirjan zone 



This research study was made possible by helps and support of the vice-chancellor for Research and Technology, Shahid Bahonar University of Kerman. The authors also would like to thank Dr. Jerry Jensen for the constructive criticisms in reviewing our manuscript.


  1. Abdollahi, M. J., Kheradmand, A., Karimpour, M. H., and Zarasvandi, A., 2006, Petrography of the gold bearing rocks in the Muteh District, Golpaygan, Isfahan Province: Proceedings of the 13th Conference of Crystallography and Mineralogy of Iran, Kerman, Shahid Bahonar University, 2006, p. 298–302 (in Persian with English abstract).Google Scholar
  2. Alavi, 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, v229, 211–238.CrossRefGoogle Scholar
  3. Barnes, H. L. 1979, Geochemistry of hydrothermal ore deposits (2nd ed.).Wiley, New York.Google Scholar
  4. BHP Engineering Co., 1991, Muteh gold ore processing report. BHP, Australia. General Iranian Mining Company, Muteh gold project, Islamic Republic of Iran, Prepared by: BHP Engineering Pty Ltd, A. C. N. 008 630 500.Google Scholar
  5. BHP Engineering Co., 1992, Report on resource evaluation for the Chah Khatoon Deposit, General Iranian Mining Company, Muteh gold project, Islamic Republic of Iran, Prepared by: BHP Engineering Pty Ltd, A. C. N. 008 630 500, 38 p.Google Scholar
  6. Cole, D. R., and Ripley, E. M. 1998, Oxygen isotope fractionation between chlorite and water from 170–350C: A preliminary assessment based on partial exchange and fluid/rock experiments, Geochim: Cosmochim. Acta, v. 63, p. 449–457.CrossRefGoogle Scholar
  7. Darehbidi, M. H., 1994, Processing of Muteh sulphide ore (Chah Khatoon): Unpublished Master’s thesis: Tehran University, Tehran, Iran (in Persian).Google Scholar
  8. Farhanghi, A. 1991, Gold prospecting in the Muteh region, Esfahan, Iran. In: Ladeira, E.A. (ed.), Brazil Gold ‘91. Balkema, Rotterdam, 801–804.Google Scholar
  9. Gebre-Mariam, M., Hagemann, S.G., Groves, D.I. 1995, A classification scheme for epigenetic lode-gold deposits. Mineralium Deposita, 30, 408–410.CrossRefGoogle Scholar
  10. Goldfarb, R.J., Leach, D.I., Pickthron, W.J., Paterson, C.J. 1988, Origin of lode-gold deposits of the Juneau gold deposit, southeast Alaska. Geology, 16, 440–443.CrossRefGoogle Scholar
  11. Goldfarb, R. J., Baker, T., Dube, B., Groves, D. I., Hart, C. J. R., and Gosselin, P. 2005, Distribution, character and genesis of gold deposits in metamorphic terranes: 100th Anniversary Volume of Economic Geology, p. 407–450.Google Scholar
  12. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M. Hagemann, S. G., Robert, F. 1998, Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Review, 13, 7–27.CrossRefGoogle Scholar
  13. Groves, D. I., Goldfarb, R. J., Robert, F., and Hart, C. 2003. Gold deposits in metamorphic belts: Current understanding, outstanding problems, future research and exploration significance: Economic Geology, v. 98, p. 1–30.Google Scholar
  14. Kerrich, R., 1987, The stable isotope geochemistry of Au-Ag vein deposits in metamorphic rocks, in Kyser T. K., ed., Mineral Canada Short Course Handbook, vol. 13, p. 287–336.Google Scholar
  15. Kerrich, R., Beckinsale, R.D., Durham, J.J. 1977, The transition between deformation regimes dominated by intercrystalline diffusion and intracrystalline creep evaluated by oxygen isotope geothermometry. Tectonophysics, 38, 241–258.CrossRefGoogle Scholar
  16. Khoei, N., 1987, Negahe Gozara Bar Metalogeniye Kansare Talaye Muteh (Metalogeny interpretations and gold position at Muteh deposits): Geological Survey of Iran, Internal Report, 7 p.Google Scholar
  17. Meheut, M., Lazzeri, M., Balan, E., Mauri, F., 2007, Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory. Geochimica et Cosmochimica Acta, 71, 3170–3181.CrossRefGoogle Scholar
  18. Mohajjel, M., and Fergusson, CL. 2000, Dextral transpression in late Cretaceous continental collision, Sanandaj-Sirjan Zone, Western Iran. Journal of Structural Geology, 22, 1125–1139.CrossRefGoogle Scholar
  19. Moritz, R., and Ghazban, F. 1995, Gold mineralization in the Precambrian basement of the Zagros belt, Esfahan province, Iran. In Pasava Kribek and Zak (Eds), Mineral Deposits, Balkem, Rotterdam, 161–164.Google Scholar
  20. Moritz, R., Ghazban. F., and Singer, B.S. 2006, Eocene Gold Ore Formation at Muteh, Sanandaj-Sirjan Tectonic Zone, Western Iran: A Result of Late-Stage Extension and Exhumation of Metamorphic Basement Rocks within the Zagros Orogen. Economic Geology, 101, 1497–1524.CrossRefGoogle Scholar
  21. O’Hara, K.D., Sharp, Z.D., Moecher. D.P., and Jenkin, G.R.T. 1997, The effect of deformation on oxygen isotope exchange in quartz and feldspar and significance of isotopic temperatures in mylonites. Journal of Geology, 105, 193–204.CrossRefGoogle Scholar
  22. O’Neil, J.R. and Taylor, H.P. Jr. 1967, The oxygen isotope and cation exchange chemestry of feldspars. American Mineral, 52, 1414–1437.Google Scholar
  23. Ohmoto, H. 1972, Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67, 551–578.CrossRefGoogle Scholar
  24. Ohmoto, H., and Rye. R.O. 1979, Isotopes of sulfur and carbon, in Barnes, H.L., eds., Geochemistry of Hydrothermal Ore Deposits (pp.798). Wiley, New York.Google Scholar
  25. Paidar-Sarvi. H. 1989, Petrographisch-lagerstattenkundliche Untersuchungen an golfuhrenden Gesteinen im Muteh-Gebiet im Western vom Zentral Iran. Heidelberger Geowissenschaftliche Abhand, 33, 173.Google Scholar
  26. Rashidnejad Omran., N., 2002, Petrology and geochemistry of the volcano-sedimentary and plutonic rocks of the south of the Delijan, concentration on gold mineralization: Unpublished doctoral dissertation, Tarbiat Moddares University, Tehran, Iran.Google Scholar
  27. Sheppard, S. M. F., and Gilg, H. A., 1996. Stable isotope geochemistry of clay minerals: Clay Minerals, v. 31, p. 1–24.CrossRefGoogle Scholar
  28. Sheppard, S.M.F. 1986, Characterization and isotopic variations in natural waters In Valley, J.W, Taylor, H.P.J., O’Neil, J.R. (Eds), Stable isotope in high temperature geological processes (Vol.16 pp.165–183). Review Mineral, Mineralogical Society of America.CrossRefGoogle Scholar
  29. Simon, K. 2001, Does dD from fluid inclusion in quartz reflect the original hydrothermal fluid?. Chemical Geology, 177, 483–495.CrossRefGoogle Scholar
  30. Soffel, H.C., Davoudzadeh, M., Rolf, C., and Schmidt. S. 1996, New paleomagnetic data from Central Iran and a Triassic palaeoreconstruction. Geologische Rundscha, 85, 293–302.CrossRefGoogle Scholar
  31. Stocklin, J. 1968, Structural history and tectonics of Iran: a review. AAPG Bulletin, 52,1229–1258.Google Scholar
  32. Taylor, H. P., 1979, Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits, in Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits (2nd edn.). Wiley, New York, 798 p.Google Scholar
  33. Taylor, H.P. Jr. 1997, Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In Barnes, H.L., eds. Geochemistry of hydrothermal ore deposits (3rd ed, pp. 229–302). Wiley, New York.Google Scholar
  34. Thiele, O. 1966, Zum Alter der Metamorphose in Zentral Iran (Trend of Metamorphism in Central Iran). Mitteilungen der geologischen Gesellschaft 58, 87–101.Google Scholar
  35. Thiele, O., Alavi. M, Assefi. R, Hushmandzadeh. A., Seyed - Emami. K, and Zahedi. M. 1968, Exploration text of the Golpaygan quadrangle map scale 1:250,000. Geological Survey of Iran, No.E7, 24.Google Scholar
  36. Ulrich, T., Gunther, D., and Heinrich, C.A. 2001, The Evolution of a Porphyry Cu-Au Deposit, Based on LA-ICP-MS Analysis of Fluid Inclusions: Bajo de la Alumbrera, Argentina. Economic Geology, 96, 1743–1774.CrossRefGoogle Scholar
  37. Voll, G. (1976) Recrystallization of quartz, biotite and feldspars from Erstfeld to the Leventina Nappe, Swiss Alps, and its geological significance. Schweizerische Mineralogische und Petrographische Mitteilungen, 56, 641–647.Google Scholar
  38. Yousefinia, N., 2004, Fluid inclusion studies of the Muteh gold deposit and their implication as an exploration factor for recognition auriferous and barren zone: Unpublished Master’s thesis, Teacher Training University of Tehran.Google Scholar
  39. Zhang, X. H., Liu, O., Ma, Y.J. and Wang, H. 2005, Geology, fluid inclusions, isotope geochemistry, and geochronology of the Paishanlou shear zone-hosted Gold Deposit, North China Craton. Ore Geology Reviews, 26, 325–348.CrossRefGoogle Scholar
  40. Zhao, Z. F., and Zheng, Y. F. 2003, Calculation of oxygen isotope fractionation in magmatic rocks. Chemical Geology, 193, 59–80.CrossRefGoogle Scholar
  41. Zheng, Y.F. 1993, Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates, Earth and Planetary Science Letters, 120, 247–263.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geology 2009

Authors and Affiliations

  • M. J. Abdollahi
    • 1
    • 2
    Email author
  • M. H. Karimpour
    • 3
  • A. Kheradmand
    • 1
  • A. R. Zarasvandi
    • 2
  1. 1.Department of GeologyShahid Bahonar UniversityKermanIran
  2. 2.Department of GeologyShahid Chamran UniversityAhvazIran
  3. 3.Department of GeologyFerdousi UniversityMashhadIran

Personalised recommendations