Natural Resources Research

, Volume 17, Issue 4, pp 197–204 | Cite as

The Sustainable Global Energy Economy: Hydrogen or Silicon?

  • W. Earl BardsleyEmail author


A sustainable global silicon energy economy is proposed as a potential alternative to the hydrogen economy. This first visualization of a silicon energy economy is based on large-scale and carbon-neutral metallic silicon production from major smelters in North Africa and elsewhere, supplied by desert silica sand and electricity from extensive solar generating systems. The resulting “fuel silicon” is shipped around the world to emission-free silicon power stations for either immediate electricity generation or stockpiling. The high energy density of silicon and its stable storage make it an ideal material for maintaining national economic functioning through security of base load power supply from a renewable source. This contrasts with the present situation of fossil fuel usage with its associated global warming and geopolitical supply uncertainties. Critical technological requirements for the silicon economy are carbon-neutral silicon production and the development of efficient silicon-fired power stations capable of high-temperature rapid oxidation of fuel silicon. A call is made for the development of research effort into these specific engineering issues, and also with respect to large-scale economical solar power generation.


Solar power carbon dioxide energy storage global warming 



The author wishes to thank two anonymous reviewers for their helpful comments.


  1. Asif, M., Muneer, T., 2007, Energy supply, its demand and security issues for developed and emerging economies: Renew. Sustain. Energ. Rev., v. 11, no. 7, p. 1388–1413. doi: 10.1016/j.rser.2005.12.004 CrossRefGoogle Scholar
  2. Auner, N., 2007, Energy economy based on silicon: facts and perspectives: Nachrichten aus der Chemie, v. 55, no. 6, p. 627–633. (English translation)CrossRefGoogle Scholar
  3. Auner, N., Holl, S., 2006, Silicon as energy carrier – facts and perspectives: Energy, v. 31, no. 10–11, p. 1395–1402. doi: 10.1016/ CrossRefGoogle Scholar
  4. Bardsley, W.E., 2005, Note on the pumped storage potential of the Onslow-Manorburn depression, New Zealand: J. Hydrol. (NZ), v. 44, no. 2, p. 131–135Google Scholar
  5. Broesamle, H., Mannstein, H., Schillings, C., Trieb, F., 2001, Assessment of solar electricity potential in North Africa based on satellite data and a geographic information system: Solar Energy, v. 70, no. 1, p. 1–12. doi: 10.1016/S0038-092X(00)00126-2 CrossRefGoogle Scholar
  6. Cherry, R.S., 2004, A hydrogen utopia?: Intl. J. Hydrogen Energy, v. 29, no. 2, p. 125–129. doi: 10.1016/S0360-3199(03)00121-6 CrossRefGoogle Scholar
  7. D’Almeida, C., Vorosmarty, C.J., Hurtt, G. C., Marengo, J.A., Dingman, S.L., Keim, B.D., 2007, The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution: Intl. J. Climatol., v. 27, no. 5, p. 633–647. doi: 10.1002/joc.1475 CrossRefGoogle Scholar
  8. Daviss, B., 2007, Our solar future: New Scient., v. 196, no. 2633, p. 33–37Google Scholar
  9. Dunn, S., 2002, Hydrogen futures: toward a sustainable energy system: Intl. J. Hydrogen Energy, v. 27, no. 3, p. 235–264. doi: 10.1016/S0360-3199(01)00131-8 CrossRefGoogle Scholar
  10. ENN, 2008, Ship CO2 emissions at 3.5 pct of global total: IMO:
  11. Fang, C., 2008, Editorial: Time out Singapore (April issue), p. 3Google Scholar
  12. Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P., 2008, Land clearing and the biofuel carbon debt: Science, v. 319, no. 5867, p. 1235–1238CrossRefGoogle Scholar
  13. Foley, J. A., Coe, M. T., Scheffer, M., Wang, G., 2003, Regime shifts in the Sahara and Sahel: interactions between ecological and climatic systems in northern Africa: Ecosystems, v. 6, no. 6, p. 524–539. doi: 10.1007/s10021-002-0227-0 CrossRefGoogle Scholar
  14. Goltsov, V. A., Veziroglu, T. N., Goltsova, L. F., 2006, Hydrogen civilization of the future – a new conception of the IAHE: Intl. J. Hydrogen Energy, v. 31, no. 2, p. 153–159. doi: 10.1016/j.ijhydene.2005.04.045 CrossRefGoogle Scholar
  15. Heiman, M. K., Solomon, B. D., 2007, Fueling U.S. transportation: the hydrogen economy and its alternatives: Environment, v. 49, no. 8, p. 10–25. doi: 10.3200/ENVT.49.8.10-25 Google Scholar
  16. Institute of Atmospheric Physics, 2007, Comparing fuel consumption, CO2 and other emissions from international shipping and aircraft.
  17. Lauer, A., Eyring, V., Hendricks, J., Joeckel, P., Lohmann, U., 2007, Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget: Atmos. Chem. Phys., v. 7, no. 19, p. 5061–5079CrossRefGoogle Scholar
  18. McDowall, W., Eames, M., 2006, Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: a review of the hydrogen futures literature: Energy Policy, v. 34, no. 11, p. 1236–1250. doi: 10.1016/j.enpol.2005.12.006 CrossRefGoogle Scholar
  19. Madlener, R., Stagl S., 2005, Sustainability-guided promotion of renewable electricity generation: Ecol. Econ., v. 53, no. 2, p. 147–167. doi: 10.1016/j.ecolecon.2004.12.016 CrossRefGoogle Scholar
  20. Ministry of Economic Development, 2007, New Zealand Energy Strategy to 2050:
  21. Mölders, N., Kramm, G., 2007, Influence of wildfire induced land-cover changes on clouds and precipitation in interior Alaska – a case study: Atmos. Res., v. 84, no. 2, p. 142–168. doi: 10.1016/j.atmosres.2006.06.004 CrossRefGoogle Scholar
  22. Moriarty, P., Honnery, D., 2007, Intermittent renewable energy: the only future source of hydrogen?: Intl. J. Hydrogen Energy, v. 32, no. 12, p. 1616–1624. doi: 10.1016/j.ijhydene.2006.12.008 CrossRefGoogle Scholar
  23. Morton O., 2006, A new day dawning?: Nature, v. 443, no. 7107, p. 19–22. doi: 10.1038/443019a CrossRefGoogle Scholar
  24. Murray, M. L., Seymour, H. E., Pimenta, R., 2007, Towards a hydrogen economy in Portugal: Intl. J. Hydrogen Energy, v. 32, no. 15, p. 3223–3229. doi: 10.1016/j.ijhydene.2007.02.027 CrossRefGoogle Scholar
  25. National Research Council, 2004, The hydrogen economy: opportunities, costs, barriers, and R&D needs.
  26. Nowotny, J., Sheppard, L. R., 2007, Solar-hydrogen: Intl. J. Hydrogen Energy, v. 32, no. 14, p. 2607–2608. doi: 10.1016/j.ijhydene.2006.09.003 CrossRefGoogle Scholar
  27. Patton, E. G., Sullivan, P. P., Moeng, C.-H., 2005, The Influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface: J. Atmos. Sci., v. 62, no. 7, p. 2078–2097. doi: 10.1175/JAS3465.1 CrossRefGoogle Scholar
  28. Pearce, F., 2008, Cleaning up coal: New Sci., v. 197, no. 2649, p. 36–39. doi: 10.1016/S0262-4079(08)60793-9 CrossRefGoogle Scholar
  29. Pimentel, P., Patzek, T., 2007, Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane: Nat. Resour. Res., v. 16, no. 3, p. 235–242. doi: 10.1007/s11053-007-9049-2 CrossRefGoogle Scholar
  30. Pyke, C. R., Andelman, S. J., 2007, Land use and land cover tools for climate adaptation: Climat. Change, v. 80, no. 3–4, p. 239–251. doi: 10.1007/s10584-006-9110-x CrossRefGoogle Scholar
  31. Rifkin, J., 2002, The Hydrogen Economy: The Creation of the Worldwide Energy Web and the Redistribution of Power on Earth: Penguin Putnam, New York, 294 pGoogle Scholar
  32. Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., Yu, T.-H., 2008, Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change: Science, v. 319, no. 5867, p. 1238–1240. doi: 10.1126/science.1151861 CrossRefGoogle Scholar
  33. Solomon, B. D., Banerjee, A., 2006, A global survey of hydrogen energy research, development and policy: Energy Policy, v. 34, no. 7, p. 781–792. doi: 10.1016/j.enpol.2004.08.007 CrossRefGoogle Scholar
  34. Tsoutsos, T., Frantzeskaki, N., Gekas, V., 2005, Environmental impacts from the solar energy technologies: Energy Policy, v. 33, no. 3, p. 289–296. doi: 10.1016/S0301-4215(03)00241-6 CrossRefGoogle Scholar
  35. van Ruijven, B., van Vuuren, D. P., de Vries, B., 2007, The potential role of hydrogen in energy systems with and without climate policy: Intl. J. Hydrogen Energy, v. 32, no. 12, p. 1655–1672. doi: 10.1016/j.ijhydene.2006.08.036 CrossRefGoogle Scholar
  36. Yamawaki, M., Nishihara, T., Inagaki, Y., Minato, K., Oigawa, H., Onuki, K., Hino, R., Ogawa, M., 2007, Application of nuclear energy for environmentally friendly hydrogen generation: Intl. J. Hydrogen Energy, v. 32, no. 14, p. 2719–2725. doi: 10.1016/j.ijhydene.2006.09.026 CrossRefGoogle Scholar
  37. Yasuda, K., Nohira T., Hagiwara, R., Ogata, Y. H., 2007, Direct electrolytic reduction of solid SiO2 in molten CaCl2 for the production of solar grade silicon: Electrochim. Acta, v. 53, no. 1, p. 106–110. doi: 10.1016/j.electacta.2007.01.024 CrossRefGoogle Scholar
  38. Yasuda, K., Nohira T., Ogata, Y. H., Ito, Y., 2005, Direct electrolytic reduction of solid silicon dioxide in molten LiCl–KCl–CaCl2 at 773 K: J. Electrochem. Soc., v. 152, no. 11, p. D208–D212. doi: 10.1149/1.2042910 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geology 2008

Authors and Affiliations

  1. 1.Department of Earth and Ocean SciencesUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations