Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The particle size effect of Yb0.8R0.2MnO3 (R is Sm, Nd, and Eu) on some physical properties

  • 14 Accesses


YbMnO3 as a rare earth manganite class of perovskite materials displayed a wide range of applications and interests for scientists. This hexagonal perovskite showed a simultaneous ferromagnetism, ferroelectricity, and ferroelasticity properties, which is considered multiferroic materials. This unique magnetic property may lead to use them in spintronic and magnetic storage media. YbMnO3 and Yb0.8R0.2MnO3 are prepared with different particle sizes to study the effect of its difference in particle size on the electrical properties and Raman scattering. All samples are prepared using co-precipitation method from the initial pure chlorides of ytterbium, samarium, europium, and manganese to be reacted with pure sodium hydroxide taking into consideration the suitable molar ratio. The EDS spectra confirmed the existence of each element in the proposed compounds according to the suggested structure. The hexagonal crystal system of space group P63cm (185) is found for all samples. From the experimental Raman measurements, the observed lines in spectra of Yb0.8Nd0.2MnO3 are found at 102, 131, 212, 460, 631, and 685 cm−1, and lines in spectra of Yb0.8Sm0.2MnO3 are found at 101, 137, 217, 462, 630, and 687 cm−1, which correspond to E2, A1, E2, A1, E1, and A1, respectively. The obtained materials showed semiconducting behavior with different activation energy gap (Ea of the undoped ytterbium manganite, Ea = 0.255 eV, increased because of doping to be 414 and 447 eV for Nd- and Sm-doped samples, respectively). The complex impedance measurements are strongly related to the microstructure of polycrystalline materials and depend on the grain size. Our electrical properties enhance the hopping mechanism of charge carrier’s transfer in the under investigation samples. The significant difference in activation energy between pure and doped ytterbium manganites were found because of the remarkable difference in the crystalline size. The crystalline size observed for pure ytterbium manganite is 67 nm to be increased with doping.

Graphical abstract of some experiment measurements of ytterbium manganites

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Abdel-Latif IA (2011) Study on the effect of particle size of strontium - ytterbium manganites on some physical properties. AIP Conf Proc 1370:108–115.

  2. Abdel-Latif IA (2016) Study on structure, electrical and dielectric properties of Eu0.65Sr0.35Fe0.3Mn0.7O3. IOP Conf Series: Mater Sci Eng 146:012003.

  3. Abdel-Latif IA et al (2008) The influence of tilt angle on the CMR in Sm0.6Sr0.4MnO3. J. Alloys Compd 452:245–248.

  4. Abdel-Latif IA et al (2015) Synthesis of novel perovskite crystal structure phase of strontium doped rare earth Manganites using sol gel method. J Magn Magn Mater 393:233–238.

  5. Abdel-Latif IA et al (2016) Electrical and magnetic transport in strontium doped europium Ferrimanganites. J Magn Magn Mater 420:363–370.

  6. Abdel-Latif IA et al (2017) Impact of the annealing temperature on Perovskite strontium doped neodymium Manganites Nanocomposites and their Photocatalytic performances. J Taiwan Inst Chem Eng 75:174–182.

  7. Abdel-Latif IA et al (2018a) Neodymium cobalt oxide as a chemical sensor. Results Phys 8:578–583.

  8. Abdel-Latif IA et al (2018b) Magnetocaloric effect, electric, and dielectric properties of Nd0.6Sr0.4MnxCo1-xO3 composites. J Magn Magn Mater 457:126–134.

  9. Abdel-Latif IA, al-Hajji LA, Faisal M, Ismail AA (2019) Doping strontium into neodymium Manganites Nanocomposites for enhanced visible light driven Photocatalysis. Sci Rep 9:13932.

  10. Ahmad N, Khan S, Ansari MMN (2018) Microstructural, optical and electrical transport properties of cd-doped SnO2 nanoparticles. Mater Res Express 5(3):035045

  11. Ayas AO et al (2017) Room temperature magnetocaloric effect in Pr1.75Sr1.25Mn2O7 double-layered perovskite manganite system. Philos Mag.

  12. Bashkirov S et al (2003) Crystal structure, electric and magnetic properties of Ferrimanganite NdFexMn1-xO3. Bull Russian Acad Sci Phys (Izvestiya Akademii Nauk Ser Fizicheskaya) 67:1165–1169

  13. Bashkirov S et al (2005) Mössbauer effect and electrical conductivity studies of SmFexMn1-xO3 (x=0.7, 0.8 and 0.9). J Alloys Compd 387:70–73.

  14. Bettaibi A, M’nassri R, Selmi A et al (2016) Effect of small quantity of chromium on the electrical, magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn0.98Cr0.02O3 manganite. Appl Phys A Mater Sci Process 122:232.

  15. Bhasin T et al (2018) Crystal structure, dielectric, magnetic and magnetoelectric properties of xNiFe2O4-(1-x)Na0.5Bi0.5TiO3 composites. J Alloys Compd 748:1022–1030.

  16. Bouziane KA et al (2005) Electronic and magnetic properties of SmFe1-xMnxO3 orthoferrites (x = 0.1, 0.2 and 0.3). J Appl Phys 97:10A504.

  17. Bykov EO et al (2019) Structural and magnetic properties of Yb1−xSrxMnO3. Ceram Int 45:10286–10294.

  18. Chandran K, Lekshmi PN, Santhosh PN (2019) High temperature spin reorientation, magnetization reversal and magnetocaloric effect in 50% Mn substituted polycrystalline ErFeO3. J Solid State Chem 279:120910.

  19. Cherif R et al (2014) Magnetic and magnetocaloric properties of La0.6Pr0.1Sr0.3Mn1−xFexO3 (0≤x≤0.3) manganites. J Solid State Chem 215:271–276.

  20. Dadami ST et al (2017) Impedance spectroscopy studies on PbFe 0.5 Nb 0.5 O 3 –BiFeO 3 Multiferroic solid solution. Ceram Int 43:16684–16692.

  21. Das H, Wysocki AL, Geng Y, Wu W, Fennie CJ (2014) Bulk magnetoelectricity in the hexagonal manganites and ferrites. Nat Commun 5:2998–2911.

  22. Elghoul A et al (2018) Rare earth effect on structural, magnetic and magnetocaloric properties of La0.75Ln0.05Sr0.2MnO3 manganites. Ceram Int 44(11):12723–12730.

  23. Fabreges X et al (2009) Spin-lattice coupling, frustration, and magnetic order in multiferroic RMnO3. Phys Rev Lett 103(6):067204

  24. Gamzatov AG, Aliev AM, Kaul AR (2017) Magnetocaloric effect in La1−xKxMnO3 (x = 0.11, 0.13, 0.15) composite structures in magnetic fields up to 80 kOe. J Alloys Compd 710:292–296.

  25. Ghosh A et al (2009) A Raman study of multiferroic LuMnO3. Solid State Sci 11(9):1639–1642.

  26. Iliev MN et al (1997) Raman- and infrared-active phonons in hexagonal YMnO3: experiment and lattice-dynamical calculations. Phys Rev B 56:2488–2494.

  27. Iqbal MJ, Ahmad Z, Meydan T, Melikhov Y (2012) Physical, electrical and magnetic properties of nano-sized co-Cr substituted magnesium ferrites. J Appl Phys 111:033906.

  28. Iqbal M, Khan MN, Khan AA et al (2017) Structure and charge transport mechanism in hydrothermally synthesized (La0.5Ba0.5MnO3) cubic perovskite manganite. J Mater Sci Mater Electron 28:15065.

  29. Kanhere P, Chen Z (2014) A review on visible light active Perovskite-based Photocatalysts. Molecules 19(12):19995–20022.

  30. Khan R et al (2016) Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. J Mater Sci Mater Electron 27(4):4003–4010.

  31. Komarov V, Wang S, Tang J (2005) Permittivity and measurements. Encyclopedia of RF and microwave engineering, edited by Kai Chang ISBN 0-471-27053-9 r : 3693-3711 John Wiley & Sons, Inc

  32. Lee et al (2005) Direct observation of a coupling between spin, lattice, and electric dipole moment in multiferroic YMnO3. Phys Rev B 71:180413R.

  33. Lee S, Pirogov A, Kang M, Jang KH, Yonemura M, Kamiyama T, Cheong SW, Gozzo F, Shin N, Kimura H, Noda Y, Park JG (2008) Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature 451:805–809.

  34. Mahato Dev K, Sujoy S, Sinha TP (2016) Structural studies and impedance spectroscopy of sol–gel derived Bi0.9Pr0.1FeO 3 nanoceramics. J Phys Chem Solids 92:45–52

  35. Maignan A et al (1997) Solid State Commun 101(4):277–281

  36. Markovich V, Puzniak R, Fita I et al (2013) J Nanopart Res 15:1862.

  37. Naseem S et al (2018) Dielectric response and room temperature ferromagnetism in Cr doped anatase TiO2 nanoparticles. J Magn Magn Mater 447:155–166.

  38. Parfenov VV et al (2003) Transfer phenomena in Nd0.65Sr0.35Mn1–xFexO3 ferrimanganites. Russ Phys J 46(10):979–980

  39. Parfenov VV et al (2007) On the structure and transport mechanism of Nd0,65Sr0,35Mn1-XFeXO3 solid solution (X=0, 0.2, 0.4, 0.8). Arab J Nucl Sc Appl 40(1):167–174

  40. Rajwali K, et al., (2015) Dielectric and magnetic properties of (Zn, co) co-doped SnO2 nanoparticles. Chinese Phys. B 24 (12): 127803

  41. Ramesh R, Spaldin N (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29.

  42. Rehman F et al (2019) Dielectric relaxation and electrical properties of Bi2.5Nd0.5Nb1.5Fe0.5O9 ceramics. Mater Chem Phys 226:100–105.

  43. Ritter CA (1996) New monoclinic perovskite allotype in Pr0.6Sr0.4MnO3. J Solid State Chem 127:276–282.

  44. Rodriguez-Carvajal (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69.

  45. Rossli R et al (2005) Spin fluctuations in the stacked-triangular antiferromagnet YMnO3. JETP Lett 81(6):287–291.

  46. Rousseau DL, Bauman RP, Porto SPS (1981) J Raman Spectrosc 10:253–290.

  47. Salama H et al (2008) A Mossbauer spectroscopy investigation of h-YbMnO3. J Phys Condens Matter 20:255213–225219.

  48. Saleh SA (2019) Study of microstructural, electrical and dielectric properties of La0.9Pb0.1MnO3 and La0.8Y0.1Pb0.1MnO3 ceramics. Sci Rev 5:33–44.

  49. Sharma HB et al (2014) Ac electrical conductivity and magnetic properties of BiFeO3–CoFe2O4 nanocomposites. J Alloys Compd 599:32–39.

  50. Shuk P, Guth U (1995) Mixed conductive electrode materials for sensors and SOFC. Ionics 1:106–111.

  51. Shuk P et al (1993) Electrodes for oxygen sensors based on rate earth manganites or cabaltites. Sensors Actuators B 15–16:401–405.

  52. Smolenskii GA, Chupis IE (1981) Ferroelectromagnets. Sov Physics-Uspekhi 25:475.

  53. Talbayev D et al (2008) Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites. Phys Rev Lett 101:247601

  54. Tokunaga Y, Lottermoser T, Lee Y, Kumai R, Uchida M, Arima T, Tokura Y (2006) Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites. Nat Mater 5:973–941.

  55. Van Aken BB, Palstra TTM, Filippetti A, Spaldin NA (2004) The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater 3(3):164.

  56. Varshney M et al (2018) Electronic structure and dielectric properties of ZrO2-CeO2 mixed oxides. J Phys Chem Solids 119:242–250.

  57. Wang YT, Luo CW, Kobayashi T (2013) Understanding multiferroic hexagonal manganites by static and ultrafast optical spectroscopy. Adv Condens Matter Phys.

  58. Yousif AA et al (2011) Study on Mossbauer and magnetic properties of strontium doped neodymium ferrimanganites perovskite-like structure. AIP Conf Proc 1370:103–107.

  59. Zhang B et al (2016) Effects of strain relaxation in Pr0.67Sr0.33MnO3 films probed by polarization dependent X-ray absorption near edge structure. Sci Rep 6:19886.

  60. Zhou J-S, Goodenough JB, Gallardo-Amores JM, Moran E, Alario-Franco MA, Caudillo R (2006) Hexagonal versus perovskite phase of manganite RMnO3 (R=Y, Ho, Er, Tm, Yb, Lu). Phys Rev B 74(1):014422.

Download references


The present research is supported by the Deanship of Scientific Research fund program in Najran University. The author is grateful for this financial support NU/ESCI/16/063 given to him in the frame of the local scientific research program support.

Author information

Correspondence to I. A. Abdel-Latif.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Nanotechnology in Arab Countries

Guest Editor: Sherif El-Eskandarany

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdel-Latif, I.A. The particle size effect of Yb0.8R0.2MnO3 (R is Sm, Nd, and Eu) on some physical properties. J Nanopart Res 22, 45 (2020).

Download citation


  • Ytterbium manganites
  • Hexagonal perovskites
  • Dielectric properties
  • Raman spectra
  • Nano-crystalline