A survey on dynamic modeling of manipulation of nanoparticles based on atomic force microscope and investigation of involved factors


In this article, the collection of studies with regard to the modeling of nanomanipulation based on atomic force microscope (AFM) is discussed. To model the manipulation process, two-dimensional and three-dimensional models in the classical environment and molecular dynamics can be presented. The decisive factor in determining the solution’s type depends on the dimensions and application of manipulation. In general, however, benefiting from multiscale methods offers more realistic results from the inherent characteristics of AFM point of view. In addition, the manipulation process is examined empirically. Different parameters affect the process. Overall, these include the geometric properties of AFM, geometric properties and material of nanoparticles, process execution environment, initial impact of nanoparticles, contact mechanics, and roughness. The geometric parameters of AFM have less importance compared with other factors. The material and geometry of nanoparticles and environmental reaction play their most dominant role in contact and roughness equations as well as intermolecular forces. For instance, for softer nanoparticles, elastoplastic and viscoelastic contact theories are more suited. In contrast, in environments except vacuum and air, roughness models with more developed adhesion terms are better choices. Employing complex contact theories can provide us with permanent deformations, roughness, reduction in force, and critical indentation depth. In addition to the involved parameters in modeling the nanomanipulation process, path planning techniques for obtaining the optimal path and control of the AFM set for its exact execution are other influential notions.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Ammi M, Frémont V, Ferreira A (2009) Automatic camera-based microscope calibration for a telemicromanipulation system using a virtual pattern. IEEE Trans Robot 25(1):184–191

  2. Arjmand MT, Sadeghian H, Salarieh H, Alasty A (2008) Chaos control in AFM systems using nonlinear delayed feedback via sliding mode control. Nonlinear Anal Hybrid Syst 2(3):993–1001

  3. Avouris P, Hertel T, Martel R, Schmidt THRHS, Shea HR, Walkup RE (1999) Carbon nanotubes: nanomechanics, manipulation, and electronic devices. Appl Surf Sci 141(3–4):201–209

  4. Baclayon M, Wuite GJL, Roos WH (2010) Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter 6(21):5273–5285

  5. Barquins M (1988) Adherence and rolling kinetics of a rigid cylinder in contact with a natural rubber surface. J Adhes 26(1):1–12

  6. Brach RM, Dunn PF (1992) A mathematical model of the impact and adhesion of microsphers. Aerosol Sci Technol 16(1):51–64

  7. Briscoe BJ, Panesar SS (1994) The adhesion of poly (urethane) to rough counterfaces: the influence of weak boundary layers. J Adhes Sci Technol 8(12):1485–1504

  8. Butt HJ (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J 60(6):1438–1444

  9. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152

  10. Chang WR, Ling FF (1992) Normal impact model of rough surfaces. J Tribol 114(3):439–447

  11. Chaudhury MK, Weaver T, Hui CY, Kramer EJ (1996) Adhesive contact of cylindrical lens and a flat sheet. J Appl Phys 80(1):30–37

  12. Chen H, Xi N, Li G (2006) CAD-guided automated nanoassembly using atomic force microscopy-based nonrobotics. IEEE Trans Autom Sci Eng 3(3):208–217

  13. Chen H, Xi N, Li G, Zhang J, Prokos M (2005) Planning and control for automated nanorobotic assembly. In: IEEE International Conference on Robotics and Automation, pp 169–174

  14. Choi HJ, Kim JY, Hong SD, Ha MY, Jang J (2009) Molecular simulation of the nanoscale water confined between an atomic force microscope tip and a surface. Mol Simul 35(6):466–472

  15. Chowdhury S, Thakur A, Svec P, Wang C, Losert W, Gupta SK (2014) Automated manipulation of biological cells using gripper formations controlled by optical tweezers. IEEE Trans Autom Sci Eng 11(2):338–347

  16. Conache G, Gray SM, Ribayrol A, Fröberg LE, Samuelson L, Pettersson H, Montelius L (2009) Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5(2):203–207

  17. Cooper K, Ohler N, Gupta A, Beaudoin S (2000) Analysis of contact interactions between a rough deformable colloid and a smooth substrate. J Colloid Interface Sci 222(1):63–74

  18. Daeinabi K, Korayem MH (2011) Indentation analysis of nano-particle using nano-contact mechanics models during nano-manipulation based on atomic force microscopy. J Nanopart Res 13(3):1075–1091

  19. Darwich S, Mougin K, Rao A, Gnecco E, Jayaraman S, Haidara H (2011) Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions. Beilstein J Nanotechnol 2(1):85–98

  20. Dean D, Hemmer J, Vertegel A, LaBerge M (2010) Frictional behavior of individual vascular smooth muscle cells assessed by lateral force microscopy. Materials 3(9):4668–4680

  21. Delnavaz A, Jalili N, Zohoor H (2007) Vibration control of AFM tip for nano-manipulation using combined sliding mode techniques. IEEE Conf Nanotechnol (IEEE NANO):106–111

  22. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326

  23. Devasia S, Eleftheriou E, Moheimani SR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823

  24. Dietzel D, Schwarz UD, Schirmeisen A (2015) Nanotribological studies by nanoparticle manipulation. In: Fundamentals of Friction and Wear on the Nanoscale. Springer, Cham, pp 363–393

  25. Dimitrievski K, Zäch M, Zhdanov VP, Kasemo B (2006) Imaging and manipulation of adsorbed lipid vesicles by an AFM tip: experiment and Monte Carlo simulations. Colloids Surf B: Biointerfaces 47(2):115–125

  26. Doostie S, Hoshiar AK, Nazarahari M, Lee S, Choi H (2018) Optimal path planning of multiple nanoparticles in continuous environment using a novel Adaptive Genetic Algorithm. Precis Eng

  27. Dorogin LM, Vlassov S, Polyakov B, Antsov M, Lõhmus R, Kink I, Romanov AE (2013) Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling. Phys Status Solidi B 250(2):305–317

  28. Eichenlaub S, Gelb A, Beaudoin S (2004) Roughness models for particle adhesion. J Colloid Interface Sci 280(2):289–298

  29. Eichhorn, V., Carlson, K., Andersen, K. N., Fatikow, S., & Boggild, P. (2007). Nanorobotic manipulation setup for pick-and-place handling and nondestructive characterization of carbon nanotubes. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 291-296). IEEE

  30. Ericksen, M. G. J. L. (1984). The Cauchy-Born hypothesis for crystals in phase transformations and material instabilities in solids. 50–66

  31. Falvo MR, Clary G, Helser A, Paulson S, Taylor RM, Chi V et al (1998) Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes. Microsc Microanal 4(5):504–512

  32. Falvo MR, Taylor Ii RM, Helser A, Chi V, Brooks FP Jr, Washburn S, Superfine R (1999) Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397(6716):236–238

  33. Falvo MR, Washburn S, Superfine R, Finch M, Brooks FP Jr, Chi V, Taylor RM 2nd (1997) Manipulation of individual viruses: friction and mechanical properties. Biophys J 72(3):1396–1403

  34. Fatah N (2009) Study and comparison of micronic and nanometric powders: analysis of physical, flow and interparticle properties of powders. Powder Technol 190(1–2):41–47

  35. Firouzi MM, Pishkenari HN, Mahboobi SH, Meghdari A (2014) Manipulation of biomolecules: a molecular dynamics study. Curr Appl Phys 14(9):1216–1227

  36. Fuller KNG, Tabor D (1975) The effect of surface roughness on the adhesion of elastic solids. Proc R Soc Lond A 345(1642):327–342

  37. Gao, Z., & Lécuyer, A. (2009). Path-planning and manipulation of nanotubes using visual and haptic guidance. IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems, 1–5

  38. Gao Z, Lecuyer A, Zhang S (2011) Virtual reality toolkit for the assembly of nanotube-based nano-electro-mechanical systems. Chinese J Mech Eng-Engl Ed 24(1):1

  39. Gnecco, E., & Meyer, E. (Eds.). (2015). Fundamentals of friction and wear on the nanoscale. Springer

  40. Guillaume-Gentil O, Potthoff E, Ossola D, Franz CM, Zambelli T, Vorholt JA (2014) Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol 32(7):381–388

  41. Guo D, Li J, Chang L, Luo J (2013) Measurement of the friction between single polystyrene nanospheres and silicon surface using atomic force microscopy. Langmuir 29(23):6920–6925

  42. Guthold M, Falvo M, Matthews WG, Paulson S, Mullin J, Lord S, Taylor RM II (1999) Investigation and modification of molecular structures with the nanoManipulator. J Mol Graph Model 17(3–4):187–197

  43. Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J (2005) A molecular delivery system by using AFM and nanoneedle. Biosens Bioelectron 20(10):2120–2125

  44. Han SW, Ryu S, Kitagawa T, Uetsuka H, Fujimori N, Aoki Y, Miyake J (2009) Evaluation of the insertion efficiencies of tapered silicon nanoneedles and invasiveness of diamond nanoneedles in manipulations of living single cells. Arch Histol Cytol 72(4):261–270

  45. Hards A, Zhou C, Seitz M, Bräuchle C, Zumbusch A (2005) Simultaneous AFM manipulation and fluorescence imaging of single DNA strands. ChemPhysChem 6(3):534–540

  46. Hertel T, Martel R, Avouris P (1998) Manipulation of individual carbon nanotubes and their interaction with surfaces. J Phys Chem B 102(6):910–915

  47. Hoshiar AK, RaeisiFard H (2017) A simulation algorithm for path planning of biological nanoparticles displacement on a rough path. J Nanosci Nanotechnol 17(8):5578–5581

  48. Hsieh S, Meltzer S, Wang CC, Requicha AA, Thompson ME, Koel BE (2002) Imaging and manipulation of gold nanorods with an atomic force microscope. J Phys Chem B 106(2):231–234

  49. Hsu JH, Chang SH (2010) Surface adhesion between hexagonal boron nitride nanotubes and silicon based on lateral force microscopy. Appl Surf Sci 256(6):1769–1773

  50. Hu J, Zhang Y, Gao H, Li M, Hartmann U (2002) Artificial DNA patterns by mechanical nanomanipulation. Nano Lett 2(1):55–57

  51. Jackson RL, Green I (2005) A finite element study of elasto-plastic hemispherical contact against a rigid flat. J Tribol 127(2):343–354

  52. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324(1558):301–313

  53. Ju, T., Liu, S., Yang, J., & Sun, D. (2011). Apply RRT-based path planning to robotic manipulation of biological cells with optical tweezer. 2011 International Conference on Mechatronics and Automation (ICMA), 221–226

  54. Junno T, Deppert K, Montelius L, Samuelson L (1995) Controlled manipulation of nanoparticles with an atomic force microscope. Appl Phys Lett 66(26):3627–3629

  55. Kashiwase Y, Ikeda T, Oya T, Ogino T (2008) Manipulation and soldering of carbon nanotubes using atomic force microscope. Appl Surf Sci 254(23):7897–7900

  56. Katainen J, Paajanen M, Ahtola E, Pore V, Lahtinen J (2006) Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci 304(2):524–529

  57. Keshavarzi, S. Mescheder, U. Reinecke, H. & Kovacs, A. (2012). Contact mechanics and needle like surfaces for micro-nano integration. In Proceedings of 23rd Micromechanics and Microsystems Europe Workshop, 4(12), 1–4

  58. Kim, D. H., Park, J., Kim, B., & Kim, K. (2002). Modeling and simulation of nanorobotic manipulation with an AFM probe, International Conference on Computer Applications in Shipbuilding, 1–3

  59. Kim HJ, Kang KH, Kim DE (2013) Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5(13):6081–6087

  60. Kim M, Lee S, Lee J, Kim DK, Hwang YJ, Lee G, Yi GR, Song YJ (2015) Deterministic assembly of metamolecules by atomic force microscope-enabled manipulation of ultra-smooth, super-spherical gold nanoparticles. Opt Express 23(10):12766–12776

  61. Ko JA, Choi HJ, Ha MY, Hong SD, Yoon HS (2010) A study on the behavior of water droplet confined between an atomic force microscope tip and rough surfaces. Langmuir 26(12):9728–9735

  62. Korayem AH, Hoshiar AK, Korayem MH (2015a) Modeling and simulation of critical forces in the manipulation of cylindrical nanoparticles. Int J Adv Manuf Technol 79(9–12):1505–1517

  63. Korayem MH, Hefzabad RN, Taheri M, Mahmoodi Z (2014a) Finite element simulation of contact mechanics of cancer cells in manipulation based on atomic force microscopy. Int J Nanosci Nanotechnol 1(1):1–12

  64. Korayem MH, Rastegar Z, Taheri M (2012a) Application of Johnson–Kendall–Roberts model in nanomanipulation of biological cell: air and liquid environment. Micro Nano Lett:576–580

  65. Korayem MH, Esmaeilzadehha S (2019) Neural network sliding mode controller of atomic force microscope-based manipulation with different cantilever probes. Microsc Res Tech 82(7):993–1003

  66. Korayem MH, Hoshiar AK (2014) Dynamic 3D modeling and simulation of nanoparticles manipulation using an AFM nanorobot. Robotica 32(4):625–641

  67. Korayem MH, Khaksar H (2019a) Estimation of critical force and time required to control the kinematics and friction of rough ellipsoidal and cubic nanoparticles using mechanics of contact surfaces. Tribol Int 137:11–21

  68. Korayem MH, Khaksar H (2019b) Investigating the impact models for nanoparticles manipulation based on atomic force microscope (according to contact mechanics). Powder Technol 344:17–26

  69. Korayem MH, Omidi E (2012) Robust controlled manipulation of nanoparticles using atomic force microscope. IET Micro Nano Lett 7(9):927–931

  70. Korayem MH, Rastegar Z (2019) Development of rough viscoelastic contact theories and manipulation by AFM for biological particles: any geometry for particle and asperities. Appl Phys A 125(6):404

  71. Korayem MH, Sadeghzadeh S (2009) A new modeling and compensation approach for creep and hysteretic loops in nanosteering by SPM’s piezotubes. Int J Adv Manuf Technol 44(11–12):1133–1143

  72. Korayem MH, Taheri M (2014) Modeling of various contact theories for the manipulation of different biological micro/nanoparticles based on AFM. J Nanopart Res 16(1):2156

  73. Korayem MH, Taheri M (2016) Simulating the manipulation of various biological micro/nanoparticles by considering a crowned roller geometry. Arab J Sci Eng 41(11):4449–4462

  74. Korayem MH, Zakeri M (2010) The effect of off-end tip distance on the nanomanipulation based on rectangular and V-shape cantilevered AFMs. Int J Adv Manuf Technol 50(5–8):579–589

  75. Korayem MH, Zakeri M (2011) Dynamic modeling of manipulation of micro/nanoparticles on rough surfaces. Appl Surf Sci 257(15):6503–6513

  76. Korayem MH, Estaji M, Homayooni A (2017a) Nonclassical multiscale modeling of ssDNA manipulation using a CNT-nanocarrier based on AFM. Colloids Surf B Biointerfaces 158:102–111

  77. Korayem MH, Habibi Sooha Y, Rastegar Z (2018a) Modeling and simulation of viscoelastic biological particles’ 3D manipulation using atomic force microscopy. Appl Phys A 124:1–13

  78. Korayem MH, Hefzabad RN, Homayooni A, Aslani H (2017b) Investigation of geometrical effects in the carbon allotropes manipulation based on AFM: multiscale approach. J Nanopart Res 19(1):12

  79. Korayem MH, Hezaveh HB, Taheri M (2014b) Dynamic modeling and simulation of rough cylindrical micro/nanoparticle manipulation with atomic force microscopy. Microsc Microanal 20(6):1692–1707

  80. Korayem MH, Homayooni A, Hefzabad RN (2018b) Non-classic multiscale modeling of manipulation based on AFM, in aqueous and humid ambient. Surf Sci 671:27–35

  81. Korayem MH, Homayooni A, Sadeghzadeh S (2013a) Semi-analytic actuating and sensing in regular and irregular MEMs, single and assembled micro cantilevers. Appl Math Model 37(7):4717–4732

  82. Korayem MH, Hoshiar AK, Nazarahari M (2016a) A hybrid co-evolutionary genetic algorithm for multiple nanoparticle assembly task path planning. Int J Adv Manuf Technol 87(9–12):3527–3543

  83. Korayem MH, Hoshiar AK, Badrlou S, Yoon J (2016b) Modeling and simulation of critical force and time in 3D manipulations using rectangular, V-shaped and dagger-shaped cantilevers. Eur J Mech-A/Solids 59:333–343

  84. Korayem MH, Khaksar H, Sharahi HJ (2019a) Modeling and simulation of contact parameters of elliptical and cubic nanoparticles to be used in nanomanipulation based on atomic force microscope. Ultramicroscopy 206:112808

  85. Korayem MH, Khaksar H, Taheri M (2013b) Modeling of contact theories for the manipulation of biological micro/nanoparticles in the form of circular crowned rollers based on the atomic force microscope. J Appl Phys 114(18):183715

  86. Korayem MH, Khaksar H, Taheri M (2014c) Simulating the impact between particles with applications in nanotechnology fields (identification of properties and manipulation). Int Nano Lett 4(4):121–127

  87. Korayem MH, Khaksar H, Taheri M (2015b) Effective parameters in contact mechanic for micro/nano particle manipulation based on atomic force microscopy. Int J Nanosci Nanotechnol 11(2):83–92

  88. Korayem MH, Khaksar H, Hefzabad RN, Taheri M (2018c) Contact simulation of soft micro/nano bioparticles for use in identification of mechanical properties and manipulation based on atomic force microscopy. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 232(2):274–285

  89. Korayem MH, Mahmoodi Z, Mohammadi M (2018d) 3D investigation of dynamic behavior and sensitivity analysis of the parameters of spherical biological particles in the first phase of AFM-based manipulations with the consideration of humidity effect. J Theor Biol 436:105–119

  90. Korayem MH, Mahmoodi Z, Taheri M, Saraee MB (2015c) Three-dimensional modeling and simulation of the AFM-based manipulation of spherical biological micro/nanoparticles with the consideration of contact mechanics theories. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 229(4):370–382

  91. Korayem MH, Mirmohammad SA, Saraee MB (2016c) Using the multiasperity models to investigate the effect of cylindrical micro/nanoparticle roughness on the critical manipulation forces. IEEE Trans Nanotechnol 15(6):911–921

  92. Korayem MH, Motaghi A, Zakeri M (2011a) Dynamic modeling of submerged nanoparticle pushing based on atomic force microscopy in liquid medium. J Nanopart Res 13(10):5009

  93. Korayem MH, Noroozi M, Daeinabi K (2012b) Control of an atomic force microscopy probe during nano-manipulation via the sliding mode method. Scientia Iranica 19(5):1346–1353

  94. Korayem MH, Noroozi M, Daeinabi K (2013c) Sliding mode control of AFM in contact mode during manipulation of nano-particle. International Journal of Advanced Design & Manufacturing Technology 6(4)

  95. Korayem MH, Nosoudi S, Far SK, Hoshiar AK (2018e) Hybrid IPSO-automata algorithm for path planning of micro-nanoparticles through random environmental obstacles, based on AFM. J Mech Sci Technol 32(2):805–810

  96. Korayem MH, Rahneshin V, Sadeghzadeh S (2012c) Coarse-grained molecular dynamics simulation of automatic nanomanipulation process: the effect of tip damage on the positioning errors. Comput Mater Sci 60:201–211

  97. Korayem MH, Sadeghzadeh S, Rahneshin V (2012d) A new multiscale methodology for modeling of single and multi-body solid structures. Comput Mater Sci 63:1–11

  98. Korayem MH, Sadeghzadeh S, Rahneshin V, Homayooni A, Safa M (2013d) Precise manipulation of metallic nanoparticles: multiscale analysis. Comput Mater Sci 67:11–20

  99. Korayem MH, Shahali S, Rastegar Z (2018f) Experimental determination of folding factor of benign breast cancer cell (MCF10A) and its effect on contact models and 3D manipulation of biological particles. Biomech Model Mechanobiol 17(3):745–761

  100. Korayem MH, Shahali S, Rastegar Z (2019b) Simulation of 3D nanomanipulation for rough spherical elastic and viscoelastic particles in a liquid medium; experimentally determination of cell’s roughness parameters and Hamaker constant’s correction. J Mech Behav Biomed Mater 90:313–327

  101. Korayem MH, Taheri M, Badkoobehhezaveh H, Khaksar H (2017c) Simulating the AFM-based biomanipulation of cylindrical micro/nanoparticles in different biological environments. J Braz Soc Mech Sci Eng 39(6):1883–1894

  102. Korayem MH, Taheri M, Ghasemi M, Badkoobehhezavh H (2015d) Investigating the effective parameters in the atomic force microscope–based dynamic manipulation of rough micro/nanoparticles by using the Sobol sensitivity analysis method. Simulation 91(12):1068–1080

  103. Korayem MH, Zakeri M, Aslzaeem MM (2011b) Sensitivity analysis of the nanoparticles on substrates using the atomic force microscope with rectangular and V-shaped cantilevers. IET Micro & Nano Letters 6(8):586–591

  104. Krupp H (1967) Particles adhesion theory and experiment. Adv Colloid Interf Sci 1:111–239

  105. Ladjal H, Hanus JL, Pillarisetti A, Keefer C, Ferreira A, Desai JP (2009) Atomic force microscopy-based single-cell indentation: experimentation and finite element simulation. In: In Intelligent Robots and Systems, IEEE/RSJ International Conference on IEEE, pp 1326–1332

  106. Ladjal H, Hanus JL, Pillarisetti A, Keefer C, Ferreira A, Desai JP (2012) Reality-based real-time cell indentation simulator. Mechatronics, IEEE/ASME Transactions 17(2):239–250

  107. Lai KWC, Xi N, Fung CKM, Zhang J, Chen H, Luo Y, Wejinya UC (2009) Automated nanomanufacturing system to assemble carbon nanotube based devices. Int J Robot Res 28(4):523–536

  108. Lamontagne CA, Cuerrier CM, Grandbois M (2008) AFM as a tool to probe and manipulate cellular processes. Pflügers Archiv-European Journal of Physiology 456(1):61–70

  109. Lefebvre J, Lynch JF, Llaguno M, Radosavljevic M, Johnson AT (1999) Single-wall carbon nanotube circuits assembled with an atomic force microscope. Appl Phys Lett 75(19):3014–3016

  110. Li, G., Xi, N., Chen, H., Saeed, A., & Yu, M. (2004). Assembly of nanostructure using AFM based nanomanipulation system. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 1, pp. 428-433). IEEE

  111. Li, G., Xi, N., Yu, M., Salem, F., Wang, D. H., & Li, J. (2003). Manipulation of living cells by atomic force microscopy. In Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003) (Vol. 2, pp. 862-867). IEEE

  112. Li X, Dunn PF, Brach RM (2000) Experimental and numerical studies of microsphere oblique impact with planar surfaces. J Aerosol Sci 31(5):583–594

  113. Li Y, Xu Q (2010) Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator. Control Systems Technology, IEEE Transactions on 18(4):798–810

  114. Liaw HC, Shirinzadeh B, Smith J (2008) Sliding-mode enhanced adaptive motion tracking control of piezoelectric actuation systems for micro/nano manipulation. IEEE Trans Control Syst Technol 16(4):826–833

  115. Lin XY, Creuzet F, Arribart H (1993) Atomic force microscopy for local characterization of surface acid-base properties. J Phys Chem 97(28):7272–7276

  116. Liu G, Li S, Yao Q (2011a) A JKR-based dynamic model for the impact of micro-particle with a flat surface. Powder Technol 207(1–3):215–223

  117. Liu Y, Leung KM, Nie HY, Lau WM, Yang J (2011b) A new AFM nanotribology method using a T-shape cantilever with an off-axis tip for friction coefficient measurement with minimized Abbé error. Tribol Lett 41(1):313–318

  118. Liu Y, Song A, Xu Z, Zong R, Zhang J, Yang W, Wang R, Hu Y, Luo J, Ma T (2018) Interlayer friction and superlubricity in single-crystalline contact enabled by two-dimensional flake-wrapped atomic force microscope tips. ACS Nano 12(8):7638–7646

  119. Lu, J. (2017). Nanoparticle assembly using an atomic force microscope (Doctoral dissertation)

  120. Lü JH (2004) Nanomanipulation of extended single-DNA molecules on modified mica surfaces using the atomic force microscopy. Colloids Surf B: Biointerfaces 39(4):177–180

  121. Lu S, Yan P, Zhang Z (2016) Tracking control of nano manipulating systems: a parallel phase-optimal notch filter approach. In: 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp 1–5

  122. Mahboobi SH, Meghdari A, Jalili N, Amiri F (2009a) Precise positioning and assembly of metallic nanoclusters as building blocks of nanostructures: a molecular dynamics study. Physica E: Low-dimensional Systems and Nanostructures 42(2):182–195

  123. Mahboobi SH, Meghdari A, Jalili N, Amiri F (2009b) Qualitative study of nanocluster positioning process: planar molecular dynamics simulations. Curr Appl Phys 9(5):997–1004

  124. Majeed MA, Yigit AS, Christoforou AP (2012) Elastoplastic contact/impact of rigidly supported composites. Compos Part B 43(3):1244–1251

  125. Mohammadi SZ, Moghaddam M, Pishkenari HN (2019) Dynamical modeling of manipulation process in trolling-mode AFM. Ultramicroscopy 197:83–94

  126. Moreno-Moreno M, Ares P, Moreno C, Zamora F, Gómez-Navarro C, Gómez-Herrero J (2019) AFM manipulation of gold nanowires to build electrical circuits. Nano Lett 19(8):5459–5468

  127. Naebi A, Hoseinzadeh M, Korayem MH, Neghabi MR, Rezazadeh I (2011) Simulation of routing in nano-manipulation for creating pattern with atomic force microscopy using genetic algorithm. Fifth Asia in Modelling Symposium (AMS) 2011:117–122

  128. Omidi E, Korayem AH, Korayem MH (2013) Sensitivity analysis of nanoparticles pushing manipulation by AFM in a robust controlled process. Precis Eng 37(3):658–670

  129. Otsuka A, IIDA K, DANJO K, SUNADA H (1985) Measurements of the adhesive force between particles of powdered organic substances and a glass substrate by means of the impact separation method. II. Effect of addition of light anhydrous silicic acid on the adhesive force of potato starch. Chem Pharm Bull 33(9):4054–4056

  130. Panahi, P., Korayem, M. H., & Khaksar, H. (2019). Manipulation of ellipsoidal nanoparticles considering roughness based on atomic force microscopy. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 1464419319832495

  131. Park KJ, Huh JH, Jung DW, Park JS, Choi GH, Lee G, Yoo PJ, Park HG, Yi GR, Lee S (2017) Assembly of “3D” plasmonic clusters by “2D” AFM nanomanipulation of highly uniform and smooth gold nanospheres. Sci Rep 7(1):6045

  132. Pawlak R, Kawai S, Meier T, Glatzel T, Baratoff A, Meyer E (2017) Single-molecule manipulation experiments to explore friction and adhesion. J Phys D Appl Phys 50(11):113003

  133. Postma HWC, de Jonge M, Yao Z, Dekker C (2000a) Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys Rev B 62(16):R10653

  134. Postma HW, Sellmeijer A, Dekker C (2000b) Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope. Adv Mater 12(17):1299–1302

  135. Qian D, Gondhalekar RH (2004) A virtual atom cluster approach to the mechanics of nanostructures. Int J Multiscale Comput Eng 2(2)

  136. Qu, Y., Liu, J., Wang, G., Song, Z., & Wang, Z. (2017). Controlled manipulation of TRAIL into single human colon cancer cells using atomic force microscope. In 2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (pp. 345-348). IEEE

  137. Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000a) Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J Colloid Interface Sci 232(1):10–16

  138. Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000b) Adhesion between nanoscale rough surfaces: II. Measurement and comparison with theory. J Colloid Interface Sci 232(1):17–24

  139. Resch R, Baur C, Bugacov A, Koel BE, Echternach PM, Madhukar A, Will P (1999) Linking and manipulation of gold multinanoparticle structures using dithiols and scanning force microscopy. J Phys Chem B 103(18):3647–3650

  140. Resch R, Baur C, Bugacov A, Koel BE, Madhukar A, Requicha AAG, Will P (1998) Building and manipulating three-dimensional and linked two-dimensional structures of nanoparticles using scanning force microscopy. Langmuir 14(23):6613–6616

  141. Resch R, Lewis D, Meltzer S, Montoya N, Koel BE, Madhukar A, Will P (2000) Manipulation of gold nanoparticles in liquid environments using scanning force microscopy. Ultramicroscopy 82(1–4):135–139

  142. Ritter C, Heyde M, Schwarz UD, Rademann K (2002) Controlled translational manipulation of small latex spheres by dynamic force microscopy. Langmuir 18(21):7798–7803

  143. Rumpf H (1990) Particle technology. Chapman and Hall press, New York

  144. Saraee MB, Korayem MH (2015) Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM. J Theor Biol 378:65–78

  145. Saraee MB, Korayem MH (2017) Dynamic modeling and simulation of 3D manipulation on rough surfaces based on developed adhesion models. Int J Adv Manuf Technol 88(1–4):529–545

  146. Sauer RA, Li S (2008) An atomistically enriched continuum model for nanoscale contact mechanics and its application to contact scaling. J Nanosci Nanotechnol 8(7):3757–3773

  147. Shao-Hua C, Zhi-Long P (2009) An extension of the two-dimensional JKR theory to the case with a large contact width. Chin Phys Lett 26(12):1–4

  148. Shen, Y., Nakajima, M., Ahmad, M. R., Kojima, S., Homma, M., & Fukuda, T. (2009). In-situ single cell manipulation via nanorobotic manipulation system inside E-SEM. International Symposium on micro-nanomechatronics and Human Science, 432-437

  149. Shuai Y, Wang Z, Xi N, Wang Y, Liu L (2018) AFM tip position control in situ for effective nano-manipulation. IEEE/ASME Transactions on Mechatronics

  150. Singh, G. (2007). Nanodevices for applications in life sciences and engineering; fabrication and mechanical characterization, Doctoral dissertation, University of Colorado at Boulder

  151. Sitti, M. (1999). Teleporated 2-D micro/nano manipulation using atomic force microscope. Ph. D thesis. University of Tokyo

  152. Sitti M, Hashimoto H (1999) Two-dimensional fine particle positioning using a piezoresistive cantilever as a micro/nano-manipulator. In: IEEE International Conference on robotics and automation, pp 2729–2735

  153. Sitti M, Hashimoto H (2000) Controlled pushing of nanoparticles: modeling and experiments. IEEE/ASME transactions on mechatronics 5(2):199–211

  154. Sitti, M., Hirahara, K., & Hashimoto, H. (1998, November). 2D micro particle assembly using atomic force microscope. Proceedings of the International Symposium on micromechatronics and human science, 143-148

  155. Sparnaay MJ (1983) Four notes on van der Waals forces. Induction effect, nonadditivity, attraction between a cone and a flat plate (asperities), history. J Colloid Interface Sci 91(2):307–319

  156. Stroscio JA, Eigler DM (1991) Atomic and molecular manipulation with the scanning tunneling microscope. Science 254(5036):1319–1326

  157. Su, C., Wei, R., Zhang, M., Rose, H., & Xu, J. (2018). Impact-free path planning of dual-manipulator system based on energy conversion. IEEE/RSJ International Conference on Intelligent Robots and Systems, 8360–8366

  158. Tabor, D. (1977). Surface forces and surface interactions. In Plenary and Invited Lectures, 3-14

  159. Tafazzoli, A., & Sitti, M. (2004a). Dynamic modes of nanoparticle motion during nanoprobe-based manipulation. IEEE Conference on Nanotechnology, 35-37

  160. Tafazzoli, A., & Sitti, M. (2004b). Dynamic behavior and simulation of nanoparticle sliding during nanoprobe-based positioning, international mechanical engineering congress and exposition, 965–972

  161. Tafazzoli, A., Pawashe, C., & Sitti, M. (2005). Atomic force microscope based two-dimensional assembly of micro/nanoparticles. IEEE International Symposium on Assembly and Task Planning, 19-21

  162. Targosz-Korecka M, Malek-Zietek KE, Brzezinka GD, Jaglarz M (2016) Morphological and nanomechanical changes in mechanosensitive endothelial cells induced by colloidal AFM probes. Scanning 38(6):654–664

  163. Thelander C, Samuelson L (2002) AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes. Nanotechnology 13(1):108

  164. Tien S, Zou Q, Devasia S (2005) Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation. IEEE Trans Control Syst Technol 13(6):921–931

  165. Timoshchuk KI, Khalisov MM, Penniyaynen VA, Krylov BV, Ankudinov AV (2019) Probing mechanical characteristics of living fibroblasts via atomic force microscopy. Tech Phys Lett 45(9):947–950

  166. Tran DK, Chung KH (2015) Simultaneous measurement of elastic properties and friction characteristics of nanowires using atomic force microscopy. Exp Mech 55(5):903–915

  167. Tranchida D, Kiflie ZB, Acierno S, Piccarolo S (2009) Nanoscale mechanical characterization of polymers by atomic force microscopy (AFM) nanoindentations: viscoelastic characterization of a model material. Meas Sci Technol 20(9):095702

  168. Tranvouez E, Orieux A, Boer-Duchemin E, Devillers CH, Huc V, Comtet G, Dujardin G (2009) Manipulation of cadmium selenide nanorods with an atomic force microscope. Nanotechnology 20(16):165304

  169. Uchechukwu, C. W. (2007). Modeling and control for micro and nano manipulation, Ph.D thesis

  170. Varol, A., Gunev, I., & Basdogan, C. (2006). A virtual reality toolkit for path planning and manipulation at nano-scale. 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 485-489

  171. Vasić B, Matković A, Gajić R, Stanković I (2016) Wear properties of graphene edges probed by atomic force microscopy based lateral manipulation. Carbon 107:723–732

  172. Wake, W. C. (1982). Adhesion and the formulation of adhesives

  173. Walz JY (1998) The effect of surface heterogeneities on colloidal forces. Adv Colloid Interf Sci 74(1–3):119–168

  174. Wang CC, Pai NS, Yau HT (2010) Chaos control in AFM system using sliding mode control by backstepping design. Commun Nonlinear Sci Numer Simul 15(3):741–751

  175. Wang, L., Tian, L., Wang, Y., Zhang, W., Wang, Z., & Liu, X. (2019). Determination of viscohyperelastic properties of tubule epithelial cells by an approach combined with AFM nanoindentation and finite element analysis. Micron, 102779

  176. Watson GS, Watson JA, Myhra S (2007) Morphology, mechanical properties and manipulation of living cells: atomic force microscopy. Nanoscale Structure and Properties of Microbial Cell Surfaces:145–173

  177. Wei, W., & Guo, L. (2016). Chaos control in AFM via disturbance observer based control. 35th Chinese Conference (CCC), 869-872

  178. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975

  179. Wu JJ (2009) Adhesive contact between a cylinder and a half-space. J Phys D Appl Phys 42(15):1–8

  180. Wu, Y., Sun, D., Huang, W., & Li, Y. (2009). Path planning in automated manipulation of biological cells with optical tweezers. International Conference on Control and Automation, 2021–2026

  181. Xie H, Wang S, Huang H (2018) Effects of surface roughness on the kinetic friction of SiC nanowires on SiN substrates. Tribol Lett 66(1):15

  182. Yamakov, V., Saether, E., & Glaessgen, E. H. (2008). A new concurrent multiscale methodology for coupling molecular dynamics and finite element analyses

  183. Yan W, Komvopoulos K (1998) Contact analysis of elastic-plastic fractal surfaces. J Appl Phys 84(7):3617–3624

  184. Yang HK, Liu LL, Yuan X, Wu SM (2017) Using a facile experimental manipulation to fabricate and tune a polyoxometalate-cholesterol hybrid material. J Colloid Interface Sci 496:150–157

  185. Yang H, Yang K, Zhang Z (2019) Self-assembly of polyoxometalate-based hybrid molecules into nanoparticles or vesicles regulated by simple experimental manipulation. Colloid Polym Sci:1–9

  186. Yang L, Li J (2017) Adaptive fuzzy sliding mode control for nano-positioning of piezoelectric actuators. Int J Fuzzy Syst 19(1):238–246

  187. Yang, Y., Dong, Z., Qu, Y., Li, M., & Li, W. J. (2008). A programmable AFM-based nanomanipulation method using vibration-mode operation. In Nano/Micro Engineered and Molecular Systems, 681-685

  188. Yau HT, Wang CC (2009) Dynamics analysis and fuzzy logic controller design of atomic force microscope system with uncertainties. J Optoelectron Adv Mater 11(8):1178–1184

  189. Yau, H. T., Wang, C. C., Kuo, C. L., Jang, M. J., & Su, Y. H. (2008). Fuzzy controller design for atomic force microscope system. IEEE International Symposium on Knowledge Acquisition and Modeling Workshop, 83-87

  190. You HX, Yu L (1999) Atomic force microscopy imaging of living cells: progress, problems and prospects. Methods Cell Sci 21(1):1–17

  191. Yu K, Tafti D (2016) Impact model for micrometer-sized sand particles. Powder Technol 294:11–21

  192. Yuya PA, Hurley DC, Turner JA (2008) Contact-resonance atomic force microscopy for viscoelasticity. J Appl Phys 104(7):074916

  193. Zhang, J. (2008). Carbon nanotube based infrared sensors—design, fabrication, and testing. Michigan State University

  194. Zhang Y, Yan P (2018) An adaptive integral sliding mode control approach for piezoelectric nano-manipulation with optimal transient performance. Mechatronics 52:119–126

  195. Zhang Y, Yan P, Zhang Z (2017) Robust adaptive backstepping control for piezoelectric nano-manipulating systems. Mech Syst Signal Process 83:130–148

  196. Zhou H, Peukert W (2008) Modeling adhesion forces between deformable bodies by FEM and Hamaker summation. Langmuir 24(4):1459–1468

  197. Zhou P, Yu H, Yang W, Wen Y, Wang Z, Li WJ, Liu L (2017) Spatial manipulation and assembly of nanoparticles by atomic force microscopy tip-induced dielectrophoresis. ACS Appl Mater Interfaces 9(19):16715–16724

  198. Zhupanska OI (2012) Adhesive full stick contact of a rigid cylinder with an elastic half-space. Int J Eng Sci 55:54–65

  199. Zou Q, Leang KK, Sadoun E, Reed MJ, Devasia S (2004) Control issues in high-speed AFM for biological applications: collagen imaging example. Asian J Control 6(2):164–178

Download references

Author information

Correspondence to H. Khaksar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korayem, M.H., Khaksar, H. A survey on dynamic modeling of manipulation of nanoparticles based on atomic force microscope and investigation of involved factors. J Nanopart Res 22, 27 (2020).

Download citation


  • Nanomanipulation
  • AFM
  • Contact mechanics
  • Roughness
  • Nanoparticle material