Advertisement

Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging

  • 85 Accesses

Abstract

Colloidal semiconductor nanocrystals have been extensively used for illumination, displays, bioimaging, and other fields. However, the most extensively used Cd-based nanocrystals are toxic. Recently, non-toxic multinary copper-based chalcogenide semiconductor nanocrystals have been studied intensively. The mostly studied in these materials are ternary Cu–In–S nanocrystals which have large adjustable luminescence range, good luminescence efficiency, and excellent device applications. Therefore, this material has been the most potential candidates to replace Cd-based materials. To date, different synthetic methods have been developed to prepare ternary Cu–In–S nanocrystals, which include hot-injection, non-injection, thermal decomposition, and solvothermal route. In order to enhance the luminescence property, incorporating of Zn2+ or overgrowth of a ZnS shell is the comment ways that researchers often use. This review will introduce the synthesis methods of multinary copper-based chalcogenide semiconductor nanocrystals and their potential applications in quantum-dot light-emitting diodes and bioimaging fields. Finally, the conclusion and prospect are provided.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Aldakov D, Lefrançois A, Reiss P (2013) Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J Mater Chem C 1:3756–3776. https://doi.org/10.1039/C3TC30273C

  2. Allen PM, Bawendi MG (2008) Ternary I-III-VI quantum dots luminescent in the red to near-infrared. J Am Chem Soc 130:9240–9241. https://doi.org/10.1021/ja8036349

  3. Bai Z, Ji W, Han D, Chen L, Chen B, Shen H, Zou B, Zhong H (2016) Hydroxyl-terminated CuInS2 based quantum dots: towards efficient and bright light emitting diodes. Chem Mater 28:1085–1091. https://doi.org/10.1021/acs.chemmater.5b04480

  4. Bai X, Purcell-Milton F, Gun’ko YK (2019) Optical properties, synthesis, and potential applications of Cu-based ternary or quaternary anisotropic quantum dots, polytypic nanocrystals, and core/shell heterostructures. Nanomaterials 9:85. https://doi.org/10.3390/nano9010085

  5. Bao H, Gong Y, Li Z, Gao M (2004) Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure. Chem Mater 16:3853–3859. https://doi.org/10.1021/cm049172b

  6. Bao H, Wang E, Dong S (2006) One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites. Small 2:476–480. https://doi.org/10.1002/smll.200500346

  7. Bao N, Qiu X, Wang YHA, Zhou Z, Lu X, Grimes CA, Gupta A (2011) Facile thermolysis synthesis of CuInS2 nanocrystals with tunable anisotropic shape and structure. Chem Commun 47:9441–9443. https://doi.org/10.1039/C1CC13314D

  8. Berends AC, Van Der Stam W, Hofmann JP, Bladt E, Meeldijk JD, Bals S, de Mello DC (2018) Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals. Chem Mater 30:2400–2413. https://doi.org/10.1021/acs.chemmater.8b00477

  9. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016. https://doi.org/10.1126/science.281.5385.2013

  10. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316. https://doi.org/10.1038/nature12340

  11. Byeon SY, Lee DR, Yook KS, Lee JY (2019) Recent progress of singlet-exciton-harvesting fluorescent organic light-emitting diodes by energy transfer processes. Adv Mater 1803714. https://doi.org/10.1002/adma.201803714

  12. Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF (2004) Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor. J Phys Chem B 108:12429. https://doi.org/10.1021/jp049107p

  13. Chen B, Zhong H, Zhang W, Tan ZA, Li Y, Yu C, Zou B (2012) Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance. Adv Funct Mater 22:2081–2088. https://doi.org/10.1002/adfm.201102496

  14. Chen Y, Huang L, Li S, Pan D (2013a) Aqueous synthesis of glutathione-capped Cu+ and Ag+-doped ZnxCd1−xS quantum dots with full color emission. J Mater Chem C 1:751–756 https://doi.org/10.1039/c2tc00107a

  15. Chen Y, Li S, Huang L, Pan D (2013b) Green and facile synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Inorg Chem 52:7819–7821. https://doi.org/10.1021/ic400083w

  16. Chen B, Chang S, Li D, Chen L, Wang Y, Chen T, Zou B, Zhong H, Rogach AL (2015) Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem Mater 27:5949–5956. https://doi.org/10.1021/acs.chemmater.5b01971

  17. Chen B, Pradhan N, Zhong H (2018a) From large-scale synthesis to lighting device applications of ternary I-III-VI semiconductor nanocrystals: inspiring greener material emitters. J Phys Chem Lett 9:435–445. https://doi.org/10.1021/acs.jpclett.7b03037

  18. Chen F, Liu Z, Guan Z, Liu Z, Li X, Deng Z, Teng F, Tang A (2018b) Chloride-passivated mg doped ZnO nanoparticles for improving performance of cadmium-free quantum-dot light-emitting diodes. ACS Photonics 5:3704–3711. https://doi.org/10.1021/acsphotonics.8b00722

  19. Cheng CY, Ou KL, Huang WT, Chen JK, Chang JY, Yang CH (2013) Gadolinium-based CuInS2/ZnS nanoprobe for dual-modality magnetic resonance/optical imaging. ACS Appl Mater Interfaces 5:4389–4400. https://doi.org/10.1021/am401428n

  20. Coughlan C, Ibanez M, Dobrozhan O, Singh A, Cabot A, Ryan KM (2017) Compound copper chalcogenide nanocrystals. Chem Rev 117:5865–6109. https://doi.org/10.1021/acs.chemrev.6b00376

  21. De Mello DC, Liljeroth P, Vanmaekelbergh D (2005) Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1:1152–1162. https://doi.org/10.1002/smll.200500239

  22. De Trizio L, Prato M, Genovese A, Casu A, Povia M, Simonutti R, Alcocer MJP, A’Andrea C, Tassone F, Manna L (2012) Strongly fluorescent quaternary Cu–In–Zn–S nanocrystals prepared from Cu1-xInS2 nanocrystals by partial cation exchange. Chem Mater 24:2400–2406. https://doi.org/10.1021/cm301211e

  23. Debnath T, Maiti S, Maity P, Ghosh HN (2015) Subpicosecond exciton dynamics and biexcitonic feature in colloidal CuInS2 nanocrystals: role of In–Cu antisite defects. J Phys Chem Lett 6:3458–3465. https://doi.org/10.1021/acs.jpclett.5b01767

  24. Deng D, Qu L, Zhang J, Ma Y, Gu Y (2013) Quaternary Zn-Ag-In-Se quantum dots for biomedical optical imaging of RGD-modified micelles. ACS Appl Mater Interfaces 5:10858–10865. https://doi.org/10.1021/am403050s

  25. Deschler F, Price M, Pathak S, Klintberg LE, Jarausch DD, Higler R, Hüttner S, Leijtens T, Stranks SD, Snaith HJ, Atatüre M, Phillips RT, Friend RH (2014) High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett 5:1421–1426. https://doi.org/10.1021/jz5005285

  26. Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C (2007) A versatile strategy for quantum dot ligand exchange. J Am Chem Soc 129:482–483. https://doi.org/10.1021/ja067742y

  27. Foda MF, Huang L, Shao F, Han HY (2014) Biocompatible and highly luminescent near-infrared CuInS2/ZnS quantum dots embedded silica beads for cancer cell imaging. ACS Appl Mater Interfaces 6:2011–2017. https://doi.org/10.1021/am4050772

  28. Gao J, Chen K, Xie R, Xie J, Yan Y, Cheng Z, Chen X (2010) In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjug Chem 21:604–609. https://doi.org/10.1021/bc900323v

  29. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185. https://doi.org/10.1021/jp025541k

  30. Girma WM, Fahmi MZ, Permadi A, Abate MA, Chang JY (2017) Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots. J Mater Chem B 5:6193–6216. https://doi.org/10.1039/C7TB01156C

  31. Guan Z, Tang A, Lv P, Liu Z, Li X, Tan ZA, Hayat T, Alsaedi A, Yang C, Teng F (2018) New insights into the formation and color-tunable optical properties of multinary Cu-In-Zn-based chalcogenide semiconductor nanocrystals. Adv Opt Mater 6:1701389. https://doi.org/10.1002/adom.201701389

  32. Guan Z, Chen F, Liu Z, Lv P, Chen M, Guo M, Li X, Teng F, Chen S, Tang A (2019) Compositional engineering of multinary Cu-In-Zn-based semiconductor nanocrystals for efficient and solution-processed red-emitting quantum-dot light-emitting diodes. Org Electron 74:46–51. https://doi.org/10.1016/j.orgel.2019.06.024

  33. Harvie AJ, Booth M, Chantry RL, Hondow N, Kepaptsoglou DM, Ramasse QM, Evans SD, Critchley K (2016) Observation of compositional domains within individual copper indium sulfide quantum dots. Nanoscale 8:16157–16161. https://doi.org/10.1039/c6nr03269a

  34. Hoye RL, Chua MR, Musselman KP, Li G, Lai ML, Tan ZK, Greenham C, MacManus-Driscoll JL, Friend RH, Credgington D (2015) Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors. Adv Mater 27:1414–1419. https://doi.org/10.1002/adma.201405044

  35. Huang WC, Tseng CH, Chang SH, Tuan HY, Chiang CC, Lyu LM, Huang MH (2012) Solvothermal synthesis of zinc blende and wurtzite CuInS2 nanocrystals and their photovoltaic application. Langmuir 28:8496–8501. https://doi.org/10.1021/la300742p

  36. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427. https://doi.org/10.1126/science.1069156

  37. Jara DH, Stamplecoskie KG, Kamat PV (2016) Two distinct transitions in CuxInS2 quantum dots. Bandgap versus sub-bandgap excitations in copper-deficient structures. J Phys Chem Lett 7:1452–1459. https://doi.org/10.1021/acs.jpclett.6b00571

  38. Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476. https://doi.org/10.1038/nature14133

  39. Jing L, Kershaw SV, Kipp T, Kalytchuk S, Ding K, Zeng J, Gao M (2015) Insight into strain effects on band alignment shifts, carrier localization and recombination kinetics in CdTe/CdS core/shell quantum dots. J Am Chem Soc 137:2073–2084. https://doi.org/10.1021/ja5127352

  40. Kim JH, Yang H (2016) High-efficiency Cu-In-S quantum-dot-light-emitting device exceeding 7%. Chem Mater 28:6329–6335. https://doi.org/10.1021/acs.chemmater.6b02669

  41. Kim JH, Han CY, Lee KH, An KS, Song W, Kim J, Oh MS, Do YR, Yang H (2015a) Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer. Chem Mater 27:197–204. https://doi.org/10.1021/cm503756q

  42. Kim Y, Yassitepe E, Voznyy O, Comin R, Walters G, Gong X, Kanjanaboos P, Nogueira AF, Sargent EH (2015b) Efficient luminescence from perovskite quantum dot solids. ACS Appl Mater Interfaces 7:25007–25013. https://doi.org/10.1021/acsami.5b09084

  43. Knowles KE, Hartstein KH, Kilburn TB, Marchioro A, Nelson HD, Whitham PJ, Gamelin DR (2016) Luminescent colloidal semiconductor nanocrystals containing copper: synthesis, photophysics, and applications. Chem Rev 116:10820–10851. https://doi.org/10.1021/acs.chemrev.6b00048

  44. Kolny-Olesiak J, Weller H (2013) Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl Mater Interfaces 5:12221–12237. https://doi.org/10.1021/am404084d

  45. Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao W, Prasad PN (2009) Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5:1302–1310. https://doi.org/10.1002/smll.200801555

  46. Leach AD, Macdonald JE (2016) Optoelectronic properties of CuInS2 nanocrystals and their origin. J Phys Chem Lett 7:572–583. https://doi.org/10.1021/acs.jpclett.5b02211

  47. Lee J, Han CS (2014) Large-scale synthesis of highly emissive and photostable CuInS2/ZnS nanocrystals through hybrid flow reactor. Nanoscale Res Lett 9:78. https://doi.org/10.1186/1556-276X-9-78

  48. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647. https://doi.org/10.1126/science.1228604

  49. Lesnyak V, George C, Genovese A, Prato M, Casu A, Ayyappan S, Scarpellini A, Manna L (2014) Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions. ACS Nano 8:8407–8418. https://doi.org/10.1021/nn502906z

  50. Li Z, Peng X (2011) Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. J Am Chem Soc 133:6578–6586. https://doi.org/10.1021/ja108145c

  51. Li L, Daou TJ, Texier I, Kim Chi TT, Liem NQ, Reiss P (2009) Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 21:2422–2429. https://doi.org/10.1021/cm900103b

  52. Li L, Pandey A, Werder DJ, Khanal BP, Pietryga JM, Klimov VI (2011a) Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J Am Chem Soc 133:1176–1179. https://doi.org/10.1021/ja108261h

  53. Li Y, Jing L, Qiao R, Gao M (2011b) Aqueous synthesis of CdTe nanocrystals: progresses and perspectives. Chem Commun 47:9293–9311. https://doi.org/10.1039/C1CC11331C

  54. Lin K, Xing J, Quan LN, de Arquer FPG, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent EH, Xiong Q (2018) Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562:245. https://doi.org/10.1038/s41586-018-0575-3

  55. Liu L, Zhong X (2012) A general and reversible phase transfer strategy enabling nucleotides modified high-quality water-soluble nanocrystals. Chem Commun 48:5718–5720 https://doi.org/10.1039/C2CC30444A

  56. Liu S, Zhang H, Qiao Y, Su X (2012) One-pot synthesis of ternary CuInS2 quantum dots with near-infrared fluorescence in aqueous solution. RSC Adv 2:819–825. https://doi.org/10.1039/C1RA00802A

  57. Liu Z, Tang A, Wang M, Yang C, Teng F (2015) Heating-up synthesis of cadmium-free and color-tunable quaternary and five-component Cu-In-Zn-S-based semiconductor nanocrystals. J Mater Chem C 3:10114–10120. https://doi.org/10.1039/C5TC02469B

  58. Liu Z, Zhao K, Tang A, Xie Y, Qian L, Cao W, Yang Y, Chen Y, Teng F (2016) Solution-processed high-efficiency cadmium-free Cu-Zn-In-S-based quantum-dot light-emitting diodes with low turn-on voltage. Org Electron 36:97–102. https://doi.org/10.1016/j.orgel.2016.05.040

  59. Liu Z, Tang A, Xie Y, Guan Z, Chen Y, Teng F (2017) Solution-processed planar white light-emitting diodes based on cadmium-free Cu-In-Zn-S/ZnS quantum dots and polymer. Org Electron 45:20–25. https://doi.org/10.1016/j.orgel.2017.02.038

  60. Lu Q, Hu J, Tang K, Qian Y, Zhou G, Liu X (2000) Synthesis of nanocrystalline CuMS2 (M= In or Ga) through a solvothermal process. Inorg Chem 39:1606–1607. https://doi.org/10.1021/ic9911365

  61. Ma J, Liu M, Li Z, Li L (2015) Synthesis of highly photo-stable CuInS2/ZnS core/shell quantum dots. Opt Mater 47:56–61. https://doi.org/10.1016/j.optmat.2015.06.054

  62. Mandal G, Darragh M, Wang YA, Heyes CD (2013) Cadmium-free quantum dots as time-gated bioimaging probes in highly-autofluorescent human breast cancer cells. Chem Commun 49:624-626. https://doi.org/10.1039/C2CC37529J

  63. Massé G (1990) Concerning lattice defects and defect levels in CuInSe2 and the I-III-VI2 compounds. J Appl Phys 68:2206–2210. https://doi.org/10.1063/1.346523

  64. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435. https://doi.org/10.1038/nmat1390

  65. Mu L, Wang F, Sadtler B, Loomis RA, Buhro WE (2015) Influence of the nanoscale Kirkendall effect on the morphology of copper indium disulfide nanoplatelets synthesized by ion exchange. ACS Nano 9:7419–7428. https://doi.org/10.1021/acsnano.5b02427

  66. Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. https://doi.org/10.1021/ja00072a025

  67. Nakamura H, Kato W, Uehara M, Nose K, Omata T, Otsuka-Yao-Matsuo S, Maeda H (2006) Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system. Chem Mater 18:3330–3335. https://doi.org/10.1021/cm0518022

  68. Nam DE, Song WS, Yang H (2011a) Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields. J Mater Chem 21:18220–18226. https://doi.org/10.1039/c1jm12437d

  69. Nam DE, Song WS, Yang H (2011b) Non-injection, one-pot synthesis of Cu-deficient CuInS2/ZnS core/shell quantum dots and their fluorescent properties. J Colloid Interface Sci 361:491–496. https://doi.org/10.1016/j.jcis.2011.05.058

  70. Norako ME, Franzman MA, Brutchey RL (2009) Growth kinetics of monodisperse Cu-In-S nanocrystals using a dialkyl disulfide sulfur source. Chem Mater 21:4299–4304. https://doi.org/10.1021/cm9015673

  71. Pan D, An L, Sun Z, Hou W, Yang Y, Yang Z, Lu Y (2008) Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J Am Chem Soc 130:5620–5621. https://doi.org/10.1021/ja711027j

  72. Park J, Kim SW (2011) CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J Mater Chem 21:3745–3750. https://doi.org/10.1039/C0JM03194A

  73. Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344. https://doi.org/10.1021/ja9805425

  74. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59. https://doi.org/10.1038/35003535

  75. Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, Dubertret B (2010) Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4:2531–2538. https://doi.org/10.1021/nn901421v

  76. Qian L, Zheng Y, Xue J, Holloway PH (2011) Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat Photonics 5:543. https://doi.org/10.1038/nphoton.2011.171

  77. Rajh T, Micic OI, Nozik AJ (1993) Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J Phys Chem 97:11999–12003. https://doi.org/10.1021/j100148a026

  78. Regulacio MD, Han MY (2016) Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc Chem Res 49:511–519. https://doi.org/10.1021/acs.accounts.5b00535

  79. Rempel JY, Bawendi MG, Jensen KF (2009) Insights into the kinetics of semiconductor nanocrystal nucleation and growth. J Am Chem Soc 131:4479–4489. https://doi.org/10.1021/ja809156t

  80. Rogach AL, Kornowski A, Gao M, Eychmüller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103:3065–3069. https://doi.org/10.1021/jp984833b

  81. Sandroni M, Wegner KD, Aldakov D, Reiss P (2017) Prospects of chalcopyrite-type nanocrystals for energy applications. ACS Energy Lett 2:1076–1088. https://doi.org/10.1021/acsenergylett.7b00003

  82. Schön JH, Bucher E (1999) Characterization of intrinsic defect levels in CuInS2. Phys Status Solidi (a) 171:511–519. https://doi.org/10.1002/(SICI)1521-396X

  83. Speranskaya ES, Beloglazova NV, Abé S, Aubert T, Smet PF, Poelman D, Hens Z (2014) Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay. Langmuir 30:7567–7575. https://doi.org/10.1021/la501268b

  84. Sutherland BR, Hoogland S, Adachi MM, Wong CT, Sargent EH (2014) Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8:10947–10952. https://doi.org/10.1021/nn504856g

  85. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458. https://doi.org/10.1021/cr900137k

  86. Tamang S, Lincheneau C, Hermans Y, Jeong S, Reiss P (2016) Chemistry of InP nanocrystal syntheses. Chem Mater 28:2491–2506. https://doi.org/10.1021/acs.chemmater.5b05044

  87. Tan Z, Zhang Y, Xie C, Su H, Liu J, Zhang C (2011) Near-band-edge electroluminescence from heavy-metal-free colloidal quantum dots. Adv Mater 23:3553–3558. https://doi.org/10.1002/adma.201100719

  88. Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH (2014) Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9:687–691. https://doi.org/10.1038/nnano.2014.149

  89. Tang A, Qu S, Teng F, Hou Y, Wang Y, Wang Z (2011) Recent developments of hybrid nanocrystal/polymer bulk heterojunction solar cells. J Nanosci Nanotechnol 11:9384–9394. https://doi.org/10.1166/jnn.2011.5311

  90. Trizion LD, Manna L (2016) Forging colloidal nanostructures via cation exchange reactions. Chem Rev 116:10852–10887. https://doi.org/10.1021/acs.chemrev.5b00739

  91. Van Der Stam W, Berends AC, Rabouw FT, Willhammar T, Ke X, Meeldijk JD, Bales S, de Mello DC (2015a) Luminescent CuInS2 quantum dots by partial cation exchange in Cu2–xS nanocrystals. Chem Mater 27:621–628. https://doi.org/10.1021/cm504340h

  92. Van Der Stam W, Bladt E, Rabouw FT, Bals S, de Mello DC (2015b) Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange. ACS Nano 9:11430–11438. https://doi.org/10.1021/acsnano.5b05496

  93. Wang J, Wang N, Jin Y, Si J, Tan ZK, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai ML, Friend RH, Huang W (2015) Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater 27:2311–2316. https://doi.org/10.1002/adma.201405217

  94. Wang Z, Zhang X, Xin W, Yao D, Liu Y, Zhang L, Zhang H (2018) Facile synthesis of Cu-In-S/ZnS core/shell quantum dots in 1-dodecanethiol for efficient light-emitting diodes with an external quantum efficiency of 7.8%. Chem Mater 30:8939–8947. https://doi.org/10.1021/acs.chemmater.8b04282

  95. Wu R, Wang T, Wu M, Lv Y, Liu X, Li J, Li LS (2018) Synthesis of highly stable CuInZnS/ZnS//ZnS quantum dots with thick shell and its application to quantitative immunoassay. Chem Eng J 348:447–454. https://doi.org/10.1016/j.cej.2018.04.145

  96. Xiang W, Ma X, Luo L, Cai W, Xie C, Liang X (2015) Facile synthesis and characterization of core/shell Cu-In-Zn-S/ZnS nanocrystals with high luminescence. Mater Chem Phys 149:437–444. https://doi.org/10.1016/j.matchemphys.2014.10.042

  97. Xie R, Peng X (2009) Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J Am Chem Soc 131:10645–10651. https://doi.org/10.1021/ja903558r

  98. Xie Y, Qian Y, Wang W, Zhang S, Zhang Y (1996) A benzene-thermal synthetic route to nanocrystalline GaN. Science 272:1926–1927. https://doi.org/10.1126/science.272.5270.1926

  99. Xie R, Kolb U, Li J, Basché T, Mews A (2005) Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 127:7480–7488. https://doi.org/10.1021/ja042939g

  100. Xie R, Battaglia D, Peng X (2007) Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J Am Chem Soc 129:15432–15433. https://doi.org/10.1021/ja076363h

  101. Xie R, Rutherford M, Peng X (2009) Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc 131:5691–5697. https://doi.org/10.1021/ja9005767

  102. Xiong WW, Yang GH, Wu XC, Zhu JJ (2013) Aqueous synthesis of color-tunable CuInS2/ZnS nanocrystals for the detection of human interleukin 6. ACS Appl Mater Interfaces 5:8210–8216. https://doi.org/10.1021/am402328t

  103. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, SeoJ SSI (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234–1237. https://doi.org/10.1126/science.aaa9272

  104. Yao J, Li P, Li L, Yang M (2018) Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater 74:36–55. https://doi.org/10.1016/j.actbio.2018.05.004

  105. Yarema O, Yarema M, Wood V (2018) Tuning the composition of multicomponent semiconductor nanocrystals: the case of I-III-VI materials. Chem Mater 30:1446–1461. https://doi.org/10.1021/acs.chemmater.7b04710

  106. Yoon HC, Oh JH, Ko M, Yoo H, Do YR (2015) Synthesis and characterization of green Zn-Ag-In-S and red Zn-Cu-In-S quantum dots for ultrahigh color quality of down-converted white LEDs. ACS Appl Mater Interfaces 7:7342–7350. https://doi.org/10.1021/acsami.5b00664

  107. Yuan F, Wang Z, Li X, Li Y, Tan ZA, Fan L, Yang S (2017) Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv Mater 29:1604436. https://doi.org/10.1002/adma.201604436

  108. Yue W, Han S, Peng R, Shen W, Geng H, Wu F, Wang M (2010) CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. J Mater Chem 20:7570–7578. https://doi.org/10.1039/C0JM00611D

  109. Zhang H, Wang LP, Xiong H, Hu L, Yang B, Li W (2003) Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv Mater 15:1712–1715. https://doi.org/10.1002/adma.200305653

  110. Zhang Y, Xie C, Su H, Liu J, Pickering S, Wang Y, Yu WW, Wang J, Wang Y, Hahm J, Dellas N, Mohney SE, Xu J (2010) Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. Nano Lett 11:329–332. https://doi.org/10.1021/nl1021442

  111. Zhang J, Xie R, Yang W (2011) A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters. Chem Mater 23:3357–3361. https://doi.org/10.1021/cm201400w

  112. Zhang W, Zhou X, Zhong X (2012) One-pot noninjection synthesis of Cu-doped ZnxCd1-xS nanocrystals with emission color tunable over entire visible spectrum. Inorg Chem 51:3579–3587. https://doi.org/10.1021/ic2024023

  113. Zhang W, Lou Q, Ji W, Zhao J, Zhong X (2014) Color-tunable highly bright photoluminescence of Cadmium-free Cu-doped Zn-In-S nanocrystals and electroluminescence. Chem Mater 26:1204–1212. https://doi.org/10.1021/cm403584a

  114. Zhang H, Wu Y, Gan Z, Yang Y, Liu Y, Tang P, Wu D (2019) Accurate intracellular and in vivo temperature sensing based on CuInS2/ZnS QD micelles. J Mater Chem B 7:2835–2844. https://doi.org/10.1039/C8TB03261K

  115. Zheng Y, Yang Z, Ying JY (2007) Aqueous synthesis of glutathione-capped ZnSe and Zn1–xCdxSe alloyed quantum dots. Adv Mater 19:1475–1479. https://doi.org/10.1002/adma.200601939

  116. Zhong H, Zhou Y, Ye M, He Y, Ye J, He C, Yang CH, Li Y (2008) Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem Mater 20:6434–6443. https://doi.org/10.1021/cm8006827

  117. Zhong H, Lo SS, Mirkovic T, Li Y, Ding Y, Li Y, Scholes GD (2010) Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nano 4:5253–5262. https://doi.org/10.1021/nn1015538

  118. Zhong H, Bai Z, Zou B (2012) Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications. J Phys Chem Lett 3:3167–3175. https://doi.org/10.1021/jz301345x

Download references

Author information

Correspondence to Aiwei Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Nanoparticles in Biotechnology and Medicine, Xiaoshan (Sean) Zhu, University of Nevada, Guest Editor

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Guan, Z. & Tang, A. Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging. J Nanopart Res 22, 28 (2020). https://doi.org/10.1007/s11051-019-4724-x

Download citation

Keywords

  • Nanocrystals
  • Multinary copper-based chalcogenide
  • Synthesis
  • Light-emitting diodes
  • Bioimaging