Advertisement

The comparison of Pr3+:LaF3 and Pr3+:LiYF4 luminescent nano- and microthermometer performances

  • M. S. PudovkinEmail author
  • S. L. Korableva
  • D. A. Koryakovtseva
  • E. V. Lukinova
  • A. V. Lovchev
  • O. A. Morozov
  • V. V. Semashko
Research Paper
  • 23 Downloads

Abstract

In the present work, we make a comparison of Pr3+:LaF3 and Pr3+:LiYF4 luminescent nano- and microthermometer performances. We studied Pr3+:LaF3 nanoparticles, synthesized via co-precipitation method (further Pr3+:LaF3 (co-precipitation)), Pr3+:LaF3 nanoparticles, synthesized via hydrothermal method (further Pr3+:LaF3 (hydrothermal)), and Pr3+:LaF3 microparticles as well as Pr3+:LiYF4 nanoparticles, synthesized via hydrothermal method (further Pr3+:LiYF4 nanoparticles) and Pr3+:LaF3 microparticles. According to the X-ray diffraction, Pr3+:LaF3 (co-precipitation) and Pr3+:LaF3 (hydrothermal) nanoparticles are hexagonal-structured nanocrystals. Pr3+:LiYF4 nanoparticles are tetragonal-structured nanocrystals. The average diameters of Pr3+:LaF3 (co-precipitation), Pr3+:LaF3 (hydrothermal), and Pr3+:LiYF4 nanoparticles are 13.9, 19.4, and 33.3 nm, respectively. The Pr3+:LaF3 (co-precipitation) and Pr3+:LaF3 (hydrothermal) nanoparticles demonstrate broadband luminescence caused by crystal lattice defects (luminescence background). This luminescence background notably decreases the temperature sensitivity of these samples. The luminescent background removing procedure significantly complicates the signal processing procedure. Pr3+:LaF3 microparticles, Pr3+:LiYF4 nanoparticles, and Pr3+:LaF3 microparticles do not demonstrate this undesirable phenomenon. The absolute temperature sensitivity Sa of Pr3+:LiYF4 nanoparticles, Pr3+:LiYF4 microparticles, and Pr3+:LaF3 microparticles at 300 K are 0.0117 ± 0.0010, 0.0106 ± 0.0010, and 0.0102 ± 0.0012 K−1, respectively. Although the values of Sa are very close for these samples, the nanosized dimensionality of Pr3+:LiYF4 nanoparticles allows achieving high spatial resolution and expanding the fields of application of Pr3+:LiYF4 nanoparticles.

Keywords

Luminescent thermometry Spectral ratio thermometry LiYF4 nanoparticles LaF3 nanoparticles Pr3+:LiYF4 Pr3+: LaF3 

Notes

Acknowledgments

The synthesis, XRD experiments, and TEM microscopy experiments were funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities [3.1156.2017/4.6] and [3.5835.2017/6.7]. The optical spectroscopy experiments were funded by the research grant of Kazan Federal University. Microscopy studies were carried out at the Interdisciplinary Center for Analytical Microscopy of Kazan Federal University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alakshin EM, Blokhin DS, Sabitova AM, Klochkov AV, Klochkov VV, Kono K (2012) Experimental proof of the existence of water clusters in fullerene-like PrF3 nanoparticles. JETP Lett 96(3):181–183CrossRefGoogle Scholar
  2. Becerro AI, Gonzalez-Mancebo D, Ocaña M (2015) Uniform, luminescent Eu:LuF3 nanoparticles. J Nanopart Res 17(1):58CrossRefGoogle Scholar
  3. Bednarkiewicz A, Stefanski M, Tomala R, Hreniak D, Strek W (2015) Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd3+ to Yb3+ energy transfer. Phys Chem Chem Phys 17(37):24315–24321CrossRefGoogle Scholar
  4. Brites CDS, Millán A, Carlos LD (2016) Lanthanides in luminescent thermometry. In: Handbook on the Physics and Chemistry of Rare Earths, vol 49. Elsevier, Amsterdam, pp 339–427Google Scholar
  5. Brites CD, Balabhadra S, Carlos LD (2019) Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry. Adv Opt Mater 7(5):1801239.  https://doi.org/10.1002/adom.201801239 CrossRefGoogle Scholar
  6. Bu YY, Cheng SJ, Wang XF, Yan XH (2015) Optical thermometry based on luminescence behavior of Dy3+-doped transparent LaF3 glass ceramics. Appl Phys A 121(3):1171–1178CrossRefGoogle Scholar
  7. Cao Z, Zhou S, Jiang G, Chen Y, Duan C, Yin M (2014) Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry. Curr Appl Phys 14(8):1067–1071CrossRefGoogle Scholar
  8. Carnall WT, Fields PR, Sarup R (1969) 1S0 Level of Pr3+ in crystal matrices and energy-level parameters for the 4f2 configuration of Pr3+ in LaF3. J Chem Phys 51(6):2587–2591CrossRefGoogle Scholar
  9. Clement S, Deng W, Drozdowicz-Tomsia K, Liu D, Zachreson C, Goldys EM (2015) Bright, water-soluble CeF3 photo-, cathodo-, and X-ray luminescent nanoparticles. J Nanopart Res 17(1):7CrossRefGoogle Scholar
  10. Davies GL, O’Brien J, Gun’ko YK (2017) Rare earth doped silica nanoparticles via thermolysis of a single source metallasilsesquioxane precursor. Sci Rep 7:45862CrossRefGoogle Scholar
  11. Dong B, Hua RN, Cao BS, Li ZP, He YY, Zhang ZY, Wolfbeis OS (2014) Size dependence of the upconverted luminescence of NaYF4:Er,Yb microspheres for use in ratiometric thermometry. Phys Chem Chem Phys 16(37):20009–20012CrossRefGoogle Scholar
  12. Esterowitz L, Bartoli FJ, Allen RE, Wortman DE, Morrison CA, Leavitt RP (1979) Energy levels and line intensities of Pr3+ in LiYF4. Phys Rev B 19(12):6442CrossRefGoogle Scholar
  13. Fedorov PP, Luginina AA, Kuznetsov SV, Osiko VV (2011) Nanofluorides. J Fluor Chem 132(12):1012–1039CrossRefGoogle Scholar
  14. Feng W, Sun LD, Zhang YW, Yan CH (2010) Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution-based process. Coord Chem Rev 254(9-10):1038–1053CrossRefGoogle Scholar
  15. Fu L, Fu Z, Yu Y, Wu Z, Jeong JH (2015) An Eu/Tb-codoped inorganic apatite Ca5(PO4)3F luminescent thermometer. Ceram Int 41(5):7010–7016CrossRefGoogle Scholar
  16. Geitenbeek RG, Vollenbroek JC, Weijgertze HM, Tregouet CB, Nieuwelink AE, Kennedy CL, Weckhuysen BM, Lohse D, van Blaaderen A, van den Berg A, Odijk M, Meijerink A (2019) Luminescence thermometry for in situ temperature measurements in microfluidic devices. Lab Chip 19(7):1236–1246CrossRefGoogle Scholar
  17. Gharouel S, Labrador-Páez L, Haro-González P, Horchani-Naifer K, Férid M (2018) Fluorescence intensity ratio and lifetime thermometry of praseodymium phosphates for temperature sensing. Journal of Luminescence. 201:372–383.CrossRefGoogle Scholar
  18. Gharouel S, Marciniak L, Lukowiak A, Strek W, Horchani-Naifer K, Férid M (2019) The impact of grain size, Pr3+ concentration, and host composition on the non-contact temperature sensing abilities of polyphosphate nano-and microcrystals. J Rare Earths 37(8):812–818.  https://doi.org/10.1016/j.jre.2018.12.001 CrossRefGoogle Scholar
  19. Guozhong C (2004) Nanostructures and nanomaterials: synthesis, properties and applications. World scientific, SingaporeGoogle Scholar
  20. Jaque D, Vetrone F (2012) Luminescence nanothermometry. Nanoscale 4(15):4301–4326CrossRefGoogle Scholar
  21. Jia LP, Yan B, Zhang Q (2013) Barium rare earth fluoride nanocrystals: high temperature solution synthesis, characterization and luminescence. J Nanopart Res 15(4):1540CrossRefGoogle Scholar
  22. Khiari S, Velázquez M, Moncorgé R, Doualan JL, Camy P, Ferrier A, Diaf M (2008) Red-luminescence analysis of Pr3+ doped fluoride crystals. J Alloys Compd 451(1-2):128–131CrossRefGoogle Scholar
  23. Kim SY, Won YH, Jang HS (2015) A strategy to enhance Eu3+ emission from LiYF4:Eu nanophosphors and green-to-orange multicolor tunable, transparent nanophosphor-polymer composites. Sci Rep 5:7866CrossRefGoogle Scholar
  24. Kuznetsov SV, Morozov OA, Gorieva VG, Mayakova MN, Marisov MA, Voronov VV (2018) Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics. J Fluor Chem 211:70–75CrossRefGoogle Scholar
  25. Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20(33):6831–6847CrossRefGoogle Scholar
  26. Liu H, Lu W, Wang H, Rao L, Yi Z, Zeng S, Hao J (2013) Simultaneous synthesis and amine-functionalization of single-phase BaYF5: Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging. Nanoscale 5(13):6023–6029CrossRefGoogle Scholar
  27. Liu J, Van Deun R, Kaczmarek AM (2019) Eu3+, Tb3+-and Er3+, Yb3+-doped α-MoO3 nanosheets for optical luminescent thermometry. Nanomaterials 9(4):646.  https://doi.org/10.3390/nano9040646 CrossRefGoogle Scholar
  28. Lyapin AA, Gorieva VG, Korableva SL, Artemov SA, Ryabochkina PA, Semashko VV (2016) Diode-pumped LiY0.3Lu0.7F4:Pr and LiYF4:Pr red lasers. Laser Phys Lett 13(12):125801CrossRefGoogle Scholar
  29. Ma L, Chen WX, Zheng YF, Zhao J, Xu Z (2007) Microwave-assisted hydrothermal synthesis and characterizations of PrF3 hollow nanoparticles. Mater Lett 61(13):2765–2768CrossRefGoogle Scholar
  30. Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco JA (2009) Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv Mater 21(40):4025–4028.  https://doi.org/10.1002/adma.200901174 CrossRefGoogle Scholar
  31. Müller S, Calmano T, Metz P, Hansen NO, Kränkel C, Huber G (2012) Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser. Opt Lett 37(24):5223–5225CrossRefGoogle Scholar
  32. Nizamutdinov AS, Semashko VV, Naumov AK, Korableva SL, Abdulsabirov RY, Polivin AN, Marisov MA (2007) Optical and gain properties of series of crystals LiF–YF3–LuF3 doped with Ce3+ and Yb3+ ions. J Lumin 127(1):71–75CrossRefGoogle Scholar
  33. Pan Z, James K, Cui Y, Burger A, Cherepy N, Payne SA, Morgan SH (2008) Terbium-activated lithium–lanthanum–aluminosilicate oxyfluoride scintillating glass and glass-ceramic. Nucl Instrum Methods Phys Res Sect A 594(2):215–219CrossRefGoogle Scholar
  34. Piñol R, Brites CD, Silva NJ, Carlos LD, Millán A (2019) Nanoscale thermometry for hyperthermia applications. Nanomaterials for Magnetic and Optical Hyperthermia Applications. Elsevier, Amsterdam, pp 139–172CrossRefGoogle Scholar
  35. Pudovkin MS, Rakhmatullin RM (2020) Fluoride nanoparticles for biomedical applications. In: Nanoparticles in Medicine. Springer, Singapore, pp 135–174.  https://doi.org/10.1007/978-981-13-8954-2_5 CrossRefGoogle Scholar
  36. Pudovkin MS, Zelenikhin PV, Krasheninnikova AO, Korableva SL, Nizamutdinov AS, Alakshin EM et al (2016) Photo-induced toxicity of PrF3 and LaF3 nanoparticles. Opt Spectrosc 121(4):538–543CrossRefGoogle Scholar
  37. Pudovkin MS, Morozov OA, Pavlov VV, Korableva SL, Lukinova EV, Osin YN et al (2017) Physical background for luminescence thermometry sensors based on Pr3+. J Nanomater 2017:3108586CrossRefGoogle Scholar
  38. Pudovkin MS, Zelenikhin PV, Shtyreva V, Morozov OA, Koryakovtseva DA, Pavlov VV et al (2018) Co-precipitation method of synthesis, characterization, and cytotoxicity of Pr3+: LaF3 (CPr = 3, 7, 12, 20, 30%) nanoparticles. J Nanotechnol 2018:8516498CrossRefGoogle Scholar
  39. Pudovkin MS, Koryakovtseva DA, Lukinova EV, Korableva SL, Khusnutdinova RS, Kiiamov AG et al (2019a) Characterization of Pr-doped LaF3 nanoparticles synthesized by different variations of co-precipitation method. J Nanomater 2019:549325.  https://doi.org/10.1155/2019/7549325 CrossRefGoogle Scholar
  40. Pudovkin MS, Koryakovtseva DA, Lukinova EV, Korableva SL, Khusnutdinova RS, Kiiamov AG et al (2019b) Luminescence nanothermometry based on Pr3+:LaF3 single core and Pr3+:LaF3/LaF3 core/shell nanoparticles. Adv Mater Sci Eng 2019:2618307.  https://doi.org/10.1155/2019/2618307 CrossRefGoogle Scholar
  41. Rahman P, Green M (2009) The synthesis of rare earth fluoride based nanoparticles. Nanoscale 1(2):214–224CrossRefGoogle Scholar
  42. Rakhmatullin RM, Pudovkin MS, Semashko VV (2019) EPR evidence of surface paramagnetic defects formation due to annealing of LaF3 nanoparticles. Magn Reson Solids Electron J 21(4)Google Scholar
  43. Rao CNR, Müller A, Cheetham AK (eds) (2006) The chemistry of nanomaterials: synthesis, properties and applications. John Wiley & SonsGoogle Scholar
  44. Runowski M, Stopikowska N, Szeremeta D, Goderski S, Skwierczyńska M, Lis S (2019a) Up-converting lanthanide fluoride core@ shell nanorods for luminescent thermometry in the first and second biological windows-β-NaYF4:Yb3+,Er3+@SiO2 temperature sensor. ACS Appl Mater Interfaces 11(14):13389–13396.  https://doi.org/10.1021/acsami.9b00445 CrossRefGoogle Scholar
  45. Runowski M, Woźny P, Martín IR, Lavín V, Lis S (2019b) Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on luminescence intensity ratio (LIR)–Studies in visible and NIR range. J Lumin 116571CrossRefGoogle Scholar
  46. Savchuk OA, Carvajal JJ, Cascales C, Massons J, Aguilo M, Diaz F (2016) Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution. J Mater Chem C 4(27):6602–6613CrossRefGoogle Scholar
  47. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100Google Scholar
  48. Semashko VV, Pudovkin MS, Cefalas AC, Zelenikhin PV, Gavriil VE, Nizamutdinov AS, Kollia Z, Ferraro A, Sarantopoulou E (2018) Tiny rare-earth fluoride nanoparticles activate tumour cell growth via electrical polar interactions. Nanoscale Res Lett 13(1):370CrossRefGoogle Scholar
  49. Shavelev AA, Nizamutdinov AS, Semashko VV, Korableva SL, Gorieva VG (2014) Distribution coefficient of Pr3+ ions in crystals of solid solutions LiF-LuF3-YF3-PrF3. J Phys Conf Ser 560(1):012019.  https://doi.org/10.1088/1742-6596/560/1/012019 CrossRefGoogle Scholar
  50. Vanetsev A, Kaldvee K, Puust L, Keevend K, Nefedova A, Fedorenko S (2017) Relation of crystallinity and fluorescent properties of LaF3:Nd3+ nanoparticles synthesized with different water-based techniques. Chem Sel 2:4874–4881.  https://doi.org/10.1002/slct.201701075 CrossRefGoogle Scholar
  51. Wang X, Li Y (2003) Fullerene-like rare-earth nanoparticles. Angew Chem Int Ed 42:3497–3500.  https://doi.org/10.1002/anie.200351006 CrossRefGoogle Scholar
  52. Wang J, Wang F, Xu J, Wang Y, Liu Y, Chen X, Liu X (2010) Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning. C R Chim 13(6-7):731–736CrossRefGoogle Scholar
  53. Yang JM, Yang H, Lin L (2011) Quantum dot nanothermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 5(6):5067–5071CrossRefGoogle Scholar
  54. Ye S, Hu R, Jiang N, Wang H, Wang D (2015) pH value manipulated phase transition, microstructure evolution and tunable upconversion luminescence in Yb3+/Er3+ codoped LiYF4/YF3 nanoparticles. Dalton Trans 44(35):15583–15590.  https://doi.org/10.1039/C5DT01552A CrossRefGoogle Scholar
  55. Yu Q, Rodriguez EM, Naccache R, Forgione P, Lamoureux G, Sanz-Rodriguez F (2014) Chemical modification of temoporfin–a second generation photosensitizer activated using upconverting nanoparticles for singlet oxygen generation. Chem Commun 50(81):12150–12153CrossRefGoogle Scholar
  56. Zhou S, Jiang G, Wei X, Duan C, Chen Y, Yin M (2014) Pr3+-Doped β-NaYF4 for temperature sensing with fluorescence intensity ratio technique. J Nanosci Nanotechnol 14(5):3739–3742CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations