Synthesis and structural characterization of iron-cementite nanoparticles encapsulated in carbon matrix

  • 50 Accesses


Carbon-encapsulated iron-cementite (Fe-Fe3C) nanoparticles, promising nanomaterials for medicine due to their valuable magnetic properties, were synthesized by a single-step solid-state pyrolysis of iron phthalocyanine. To obtain required magnetic characteristics of such nanoparticles by governing of the pyrolysis conditions one needs reliable structural information of the atomic architecture of the obtained nanoparticles of composition (Fe-Fe3C), in which Fe atoms have different types of the local surrounding. The latter complicates the structural characterization of samples, which was performed using the complementary methods of TEM, SAXS, XRD, XANES, and EXAFS and the results of simulations by the method of reactive force field molecular dynamics (ReaxFF MD). The size of the particles is on the order of 10 nm with cementite concentration of about 60–70 wt%. The simulations enabled to reveal that the most plausible combinations of the local structures of Fe atoms in (Fe-Fe3C) nanoparticle result in the difference of corresponding atomic pair radial distribution functions relatively to iron (RDF), which can be further filtered through the comparison with experimentally obtained RDF for iron atoms in the studied sample. Such RDF was derived from experimental Fe K-edge EXAFS in the sample by Fourier transform multi-shell processing within harmonic approximation and using the results of the analysis of SAXS, XRD, and XANES. The used approach, based on the filtering of ReaxFF MD-calculated RDFs via comparison with the EXAFS derived RDF, revealed that for particles of composition (Fe-Fe3C) with XRD derived iron:cementite ratio of \(\sim 40\):60 wt% and sizes bigger than 4 nm, the architecture with iron in core region of particle and cementite in its shell (Fe@Fe3C) is the most probable for the mean nanoparticle comparing with architectures of the inverted core-shell (Fe3C@Fe) or the mixture of iron and cementite phases (Fe+Fe3C).

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Aktulga H, Fogarty J, Pandit S, Grama A (2012) Parallel reactive molecular dynamics: numerical methods and algorithmic techniques. Parallel Computing 38(4-5):245–259.

  2. Alsina MA, Gaillard JF (2018) Structural characterization of metal complexes in aqueous solutions: a XAS study of stannous fluoride. Phys Chem Chem Phys 20:12727–12735.

  3. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58:7565–7576.

  4. Blanco-Andujar C, Walter A, Cotin G, Bordeianu C, Mertz D, Felder-Flesch D, Begin-Colin S (2016) Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 11 (14):1889–1910.

  5. Bocharov D, Chollet M, Krack M, Bertsch J, Grolimund D, Martin M, Kuzmin A, Purans J, Kotomin E (2017) Analysis of the U L3-edge X-ray absorption spectra in UO2 using molecular dynamics simulations. Prog Nucl Energy 94:187–193.

  6. Bock DC, Pelliccione CJ, Zhang W, Timoshenko J, Knehr KW, West AC, Wang F, Li Y, Frenkel AI, Takeuchi ES, Takeuchi KJ, Marschilok AC (2017) Size dependent behavior of Fe3O4 crystals during electrochemical (de)lithiation: an in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation. Phys Chem Chem Phys 19:20867–20880.

  7. Bugaev LA, van Bokhoven JA, Sokolenko AP, Latokha YV, Avakyan LA (2005) Local structure of aluminum in zeolite mordenite as affected by temperature. J Phys Chem B 109(21):10771–10778.

  8. Chill ST, Anderson RM, Yancey DF, Frenkel AI, Crooks RM, Henkelman G (2015) Probing the limits of conventional extended x-ray absorption fine structure analysis using thiolated gold nanoparticles. ACS Nano 9(4):4036–4042.

  9. Coral DF, Mendoza Zélis P, Marciello M, Morales M d P, Craievich A, Sánchez FH, Fernández van Raap MB (2016) Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir 32(5):1201–1213.

  10. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409.

  11. Dutz S, Hergt R (2014) Magnetic particle hyperthermia – a promising tumour therapy? Nanotechnology 25(45):452001.

  12. Eremenko M, Krayzman V, Gagin A, Levin I (2017) Advancing reverse Monte Carlo structure refinements to the nanoscale. J Appl Crystallogr 50(6):1561–1570.

  13. Giordano C, Kraupner A, Wimbush SC, Antonietti M (2010) Iron carbide: an ancient advanced material. Small 6(17):1859–1862.

  14. Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya NR, Moeck P, Downs RT, Le Bail A (2012) Crystallography open database (cod): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40(D1):D420–D427.

  15. Hammersley AP (1998) Fit2d v9.129 reference manual v3.1. Internal Report ESRF98HA01T, ESRF

  16. Harrison JA, Schall JD, Maskey S, Mikulski PT, Knippenberg MT, Morrow BH (2018) Review of force fields and intermolecular potentials used in atomistic computational materials research. Appl Phys Rev 5(3):031104.

  17. Ingham B (2015) X-ray scattering characterisation of nanoparticles. Crystallogr Rev 21(4):229–303.

  18. Jiang WJ, Gu L, Li L, Zhang Y, Zhang X, Zhang LJ, Wang JQ, Hu JS, Wei Z, Wan LJ (2016) Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3c nanoparticles boost the activity of Fe–Nx. J Am Chem Soc 138(10):3570–3578.

  19. Kumar R, Sahoo B (2018a) Carbon nanotubes or carbon globules: optimization of the pyrolytic synthesis parameters and study of the magnetic properties. Nano-Structures & Nano-Objects 14:131–137.

  20. Kumar R, Sahoo B (2018b) Investigation of disorder in carbon encapsulated core-shell Fe/Fe3C nanoparticles synthesized by one-step pyrolysis. Diamond Relat Mater 90:62–71.

  21. Kumar R, Sahoo B (2018c) One-step pyrolytic synthesis and growth mechanism of core-shell type Fe/Fe3C-graphite nanoparticles-embedded carbon globules. Nano-Structures & Nano-Objects 16:77–85.

  22. Kumar R, Choudhary HK, Pawar SP, Bose S, Sahoo B (2017a) Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Phys Chem Chem Phys 19:23268–23279.

  23. Kumar R, Rajendiran R, Choudhary HK, Naveen Kumar GM, Balaiah B, Anupama AV, Sahoo B (2017b) Role of pyrolysis reaction temperature and heating-rate in the growth and morphology of carbon nanostructures. Nano-Structures & Nano-Objects 12:229–238.

  24. Kumar R, Anupama AV, Kumaran V, Sahoo B (2018) Effect of solvents on the structure and magnetic properties of pyrolysis derived carbon globules embedded with iron/iron carbide nanoparticles and their applications in magnetorheological fluids. Nano-Structures & Nano-Objects 16:167–173.

  25. Lamberti C, van Bokhoven JA (2016) X-ray absorption and x-ray emission spectroscopy: theory and applications, John Wiley & Sons, Ltd, chap X-ray absorption and emission spectroscopy for catalysis.

  26. Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dułak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Jensen PB, Kermode J, Kitchin JR, Kolsbjerg EL, Kubal J, Kaasbjerg K, Lysgaard S, Maronsson JB, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW (2017) The atomic simulation environment - a Python library for working with atoms. J Phys: Condens Matter 29(27):273002.

  27. Leontyev IN, Kuriganova AB, Allix M, Rakhmatullin A, Timoshenko PE, Maslova OA, Mikheykin AS, Smirnova NV (2018) On the evaluation of the average crystalline size and surface area of platinum catalyst nanoparticles. Phys Status Solidi B 255(10):1800240.

  28. Li T, Senesi AJ, Lee B (2016) Small angle x-ray scattering for nanoparticle research. Chem Rev 116(18):11128–11180.

  29. López-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogués J (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 553:1–32.

  30. Luo N, Li X, Wang X, Yan H, Zhang C, Wang H (2010) Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method. Carbon 48(13):3858–3863.

  31. Manukyan A, Mirzakhanyan A, Badalyan G, Shirinyan G, Fedorenko A, Lianguzov N, Yuzyuk Y, Bugaev L, Sharoyan E (2012a) Nickel nanoparticles in carbon structures prepared by solid-phase pyrolysis of nickel-phthalocyanine. J Nanopart Res 14:1–7.

  32. Manukyan AS, Mirzakhanyan AA, Khachatryan TK, Badalyan GR, Abdulvakhidov KG, Bugaev LA, Sharoyan EG (2012b) Copper-carbon nanocomposites prepared by sold-phase pyrolysis of copper phthalocyanine. J Contemp Physics (Armenian Ac Sci) 47(6):292–295.

  33. Meffre A, Mehdaoui B, Kelsen V, Fazzini PF, Carrey J, Lachaize S, Respaud M, Chaudret B (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12(9):4722–4728.

  34. Moisala A, Nasibulin AG, Kauppinen EI (2003) The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes – a review. J Phys: Condens Matter 15(42):S3011.

  35. Mourdikoudis S, Pallares RM, Thanh NTK (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934.

  36. Neder RB (2014) PDF analysis of nanoparticles, chap 3. Wiley-Blackwell, pp 155–200.

  37. Newville M (2013) Larch: an analysis package for XAFS and related spectroscopies. J Phys: Conf Ser 430(1):012007.

  38. Obaidat IM, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5(1):63–89.

  39. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36(13):R167.

  40. Pérez-Rodríguez S, Pastor E, Lázaro M (2017) Noble metal-free catalysts supported on carbon for CO2 electrochemical reduction. J CO2 Util 18(Supplement C):41–52.

  41. Piktel E, Niemirowicz K, Wa̧tek M, Wollny T, Deptuła P, Bucki R (2016) Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. Journal of Nanobiotechnology 14(1):39.

  42. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117 (1):1–19.

  43. Poiarkova AV, Rehr JJ (1999) Multiple-scattering x-ray-absorption fine-structure Debye-Waller factor calculations. Phys Rev B 59:948–957.

  44. Ravel B, Newville M (2005) Athena, artemis, hephaestus: data analysis for x-ray absorption spectroscopy using ifeffit. J Sync Rad 12 (4):537–541.

  45. Rehr JJ, Kas JJ, Vila FD, Newville M (2017) Theory and analysis of XAFS. Springer International Publishing, Berlin, pp 13–50.

  46. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, Junkermeier C, Engel-Herbert R, Janik MJ, Aktulga HM, Verstraelen T, Grama A, van Duin ACT (2016) The ReaxFF reactive force-field: development, applications and future directions. npj Comput Mater 2:15011.

  47. Soldatov MA, Göttlicher J, Kubrin SP, Guda AA, Lastovina TA, Bugaev AL, Rusalev YV, Soldatov AV, Lamberti C (2018) Insight from x-ray absorption spectroscopy to octahedral/tetrahedral site distribution in Sm-doped iron oxide magnetic nanoparticles. J Phys Chem C 122(15):8543–8552.

  48. Toby BH, Von Dreele RB (2013) GSAS-ii: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46(2):544–549.

  49. Vao-soongnern V, Pipatpanukul C, Horpibulsuk S (2015) A combined x-ray absorption spectroscopy and molecular dynamic simulation to study the local structure potassium ion in hydrated montmorillonite. J Mater Sci 50(21):7126–7136.

  50. Yang DS, Fazzini DR, Morrison TI, Tröger L, Bunker G (1997) Modeling of pair distribution functions for XAFS in disordered systems. J Non-Cryst Solids 210(2-3):275–286.

  51. Yang TI, Chang SH (2017) Controlled synthesis of metallic iron nanoparticles and their magnetic hyperthermia performance in polyaniline composite nanofibers. Nanotechnology 28(5):055601.

  52. Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of x-ray-absorption spectra. Phys Rev B 52:2995–3009.

  53. Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA (2016) Ultrasmall inorganic nanoparticles: state-of-the-art and perspectives for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine 12 (6):1663–1701.

  54. Zhang D, Wei S, Kaila C, Su X, Wu J, Karki AB, Young DP, Guo Z (2010) Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2:917–919.

  55. Zizak I, für Materialien und Energie HZB (2016) The mySpot beamline at BESSY II. J large-scale Res Facil JLSRF 2:A102.

  56. Zou C, van Duin ACT, Sorescu DC (2012) Theoretical investigation of hydrogen adsorption and dissociation on iron and iron carbide surfaces using the ReaxFF reactive force field method. Top. Catal. 55 (5):391–401.

Download references


The authors acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and thank Dr. Olivier Mathon for assistance in using beamline BM-23 for X-ray absorption experiments. The authors also acknowledge the BESSY-II for provision of synchrotron radiation facilities at μ SPOT beamline for X-ray scattering experiments and Dr. Ivo Zizak for his help.

Funding information

This work was supported by the RA MES State Committee of Science and Russian Foundation for Basic Research in the frames of the joint research projects SCS 18RF-120 and RFBR 18-52-05004 respectively. Armenian authors received a research grant # condmatex-4771 from the Armenian National Science and Education Fund (ANSEF) based in New York, USA. J.C. received support from the Fundação para a Ciîncia e a Tecnologia (FCT) under contract UID/CTM/50025/2013, co-funded by FEDER funds through the COMPETE 2020 Program.

Author information

Correspondence to Leon Avakyan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Available online resources provides supplementary material concerning:

1. Animation of the construction steps of nanoparticle atomic models;

2. Figures S1S5 and Tables S1S4.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 58.8 MB)

(MP4 58.8 MB)

(PDF 1.80 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avakyan, L., Manukyan, A., Bogdan, A. et al. Synthesis and structural characterization of iron-cementite nanoparticles encapsulated in carbon matrix. J Nanopart Res 22, 30 (2020).

Download citation


  • Atomic structure of particles
  • Pair radial distribution function
  • Molecular dynamics
  • XRD
  • SAXS