Macrophage-targeted and clearable glutathione-based MRI nanoprobes for atherosclerosis molecular imaging

  • Liang Li
  • Jiahui Wang
  • Menglin Wu
  • Yana He
  • Hongtuan Zhang
  • Guoping Xu
  • Li Chen
  • Xinying Jia
  • Qi Guo
  • Xuening ZhangEmail author
Research Paper


Foam macrophage infiltration is one of the clinical features of high-risk atherosclerotic plaques. Many imaging modalities such as magnetic resonance imaging (MRI) have been used to detect foam macrophages for evaluating plaque vulnerability. However, targeting efficiency, biocompatibility, and clearance remain pivotal challenges in design of new MRI contrast agents. Herein, we report a sensitive, class AI scavenger receptors (SR-AI)-targeted, glutathione-biomineralized gadolinium-based nanoparticle for noninvasive precise MR imaging of macrophages within carotid atherosclerotic lesions in apoE-deficient (ApoE−/−) mice. The resultant PP1 (16-mer peptide, LSLERFLRCWSDAPAK)-gold-gadolinium nanoparticles (NPs) possessed superior stability, prominent longitudinal relaxivity, and negligible cytotoxicity. In vitro results showed the highest internalization in activated macrophages and in vivo MR images revealed signal augment in carotid atherosclerotic lesions after PP1-gold-gadolinium NP administration at 4 h and 12 h, which were strong testimonial to the formidable macrophage-targeting ability and the subsequent atherosclerosis-retention biofunctions. To summarize, our tactically elaborated biocompatible multifunctional MR NPs integrate T1 signal amplification, precise macrophage targeting, and systematic clearance capabilities, which offer an innovative strategy for noninvasively characterizing vulnerable plaques of early-stage atherosclerosis, or for a wide range of clinical diagnosis and treatment applications.


Clearable nanoparticles Macrophage targeting MRI Atherosclerosis Nanomedicine 



This study was funded by the National Natural Science Foundation of China (81701826), Key Project of Tianjin Natural Science Foundation (16KPXMSF00140), Key Project of Tianjin Health and Family Planning Commission (16KG115), and Science Foundation of the Second Hospital of Tianjin Medical University (2017YDEY11, 2018YDEY11).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4688_MOESM1_ESM.docx (2.7 mb)
ESM 1 (DOCX 2730 kb)
11051_2019_4688_MOESM2_ESM.docx (2.7 mb)
ESM 2 (DOCX 2731 kb)


  1. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352CrossRefGoogle Scholar
  2. Chen N, Wang H, Huang Q, Li J, Yan J (2014) Long-term effects of nanoparticles on nutrition and metabolism. Small 10:3603–3611CrossRefGoogle Scholar
  3. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of nanoparticles. Nat Biotechnol 25:1165–1170CrossRefGoogle Scholar
  4. Deng S, Zhang W, Zhang B, Hong R, Chen Q, Dong J, Chen Y, Chen Z, Wu Y (2015) Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. J Nanopart Res 17:19CrossRefGoogle Scholar
  5. Dweck MR, Aikawa E, Newby DE, Tarkin JM, Rudd JHF, Narula J, Fayad ZA (2016) Non-invasive molecular imaging of disease activity in atherosclerosis. Circ Res 119:330–340CrossRefGoogle Scholar
  6. Fuster V, Moreno PR, Fayad ZA, Corti R, Badimon JJ (2005) Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol 46:937–954CrossRefGoogle Scholar
  7. Gough PJ, Greaves DR, Suzuki H, Hakkinen T, Hiltunen MO, Turunen M, Herttuala SY, Kodama T, Gordon S (1999) Analysis of macrophage Scavenger receptor (SR-A) expression in human aortic atherosclerotic lesions. Arterioscler Thromb Vasc Biol 19:461–471CrossRefGoogle Scholar
  8. Hiltunen TP, Luoma JS, Nikkari T, Ylä-Herttuala S (1998) Expression of LDL receptor, VLDL receptor, LDL receptor-related protein, and Scavenger receptor in rabbit atherosclerotic lesions: marked induction of scavenger receptor and VLDL receptor expression during lesion development. Circulation 97:1079–1086CrossRefGoogle Scholar
  9. Htun NM, Chen YC, Lim B, Schiller T, Maghzal GJ, Huang AL (2017) Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques. Nat Commun 8:75CrossRefGoogle Scholar
  10. Hu D, Sheng Z, Zhang P, Yang D, Liu S, Gong P, Gao D, Fang S, Ma Y, Cai L (2013) Hybrid gold-gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo. Nanoscale 5:1624–1628CrossRefGoogle Scholar
  11. Kheirolomoom A, Kim CW, Seo JW, Kumar S, Son DJ, Gagnon KJ, Ingham ES, Ferrara KW, Jo H (2015) Multifunctional nanoparticles facilitate molecular targeting and miRNA delivery to inhibit atherosclerosis in ApoE-/- mice. ACS Nano 9:8885–8897CrossRefGoogle Scholar
  12. Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type 1 macrophage scavenger receptor contains alpha-hehcal and collagen-like coiled coils. Nature 343:531–535CrossRefGoogle Scholar
  13. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325CrossRefGoogle Scholar
  14. Le W, Cui S, Chen X, Zhu H, Chen B, Cui Z (2016) Facile synthesis of Gd-functionalized gold nanoclusters as potential MRI/CT contrast agents. Nanomaterials 6:65CrossRefGoogle Scholar
  15. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717CrossRefGoogle Scholar
  16. Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, Xie J (2012) From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J Am Chem Soc 134:16662–16670CrossRefGoogle Scholar
  17. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel L (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782CrossRefGoogle Scholar
  18. Nabel EG, Braunwald E (2012) A tale of coronary artery disease and myocardial infarction. N Engl J Med 366:54–63CrossRefGoogle Scholar
  19. Qiao R, Qiao H, Zhang Y, Wang Y, Chi C, Tian J, Zhang L, Cao F, Gao M (2017) Molecular imaging of vulnerable atherosclerotic plaques in vivo with osteopontin-specific upconversion nanoprobes. ACS Nano 11:1816–1825CrossRefGoogle Scholar
  20. Ross R (1999) Atherosclerosis - an inflammatory disease. N Engl J Med 340:115–126CrossRefGoogle Scholar
  21. Samira R, Hossein R, Mohammad HB, Shahram A (2011) MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles. J Nanopart Res 13:2285–2293CrossRefGoogle Scholar
  22. Segers FM, den Adel B, Bot I, van Graaf LM, Veer EP, Gonzalez W, Raynal I, de Winther M, Wodzig WK, Poelmann RE, van Berkel TJ, van Weerd L, Biessen EA (2013) Scavenger receptor-AI-targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 33:1812–1819CrossRefGoogle Scholar
  23. Segers FM, Yu H, Molenaar TJ, Prince P, Tanaka T, van Berkel TJ, Biessen EA (2012) Design and validation of a specific scavenger receptor class AI binding peptide for targeting the inflammatory atherosclerotic plaque. Arterioscler Thromb Vasc Biol 32:971–978CrossRefGoogle Scholar
  24. Arbab-Zadeh A, Nakano M, Virmani R, FusterV (2012) Acute coronary events. Circulation 125:1147-1156CrossRefGoogle Scholar
  25. Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Horiushi S, Takahashi K, Kruijt JK, Berkel TJ, Steinbrecher UP, Ishibashi S, Maeda N, Gordon S, Kodama T (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296CrossRefGoogle Scholar
  26. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18CrossRefGoogle Scholar
  27. Wang J, Liu J, Liu Y, Wang L, Cao M, Ji Y, Wu X, Xu Y, Bai B, Miao Q, Chen C, Zhao Y (2016b) Gd-hybridized plasmonic Au-nanocomposites enhanced tumor-interior drug permeability in multimodal imaging-guided therapy. Adv Mater 28:8950–8958CrossRefGoogle Scholar
  28. Wang Y, Chen J, Yang B, Qiao H, Gao L, Su T, Ma S, Zhang X, Li X, Liu G, Cao J, Chen X, Chen Y, Cao F (2016a) In vivo MR and fluorescence dual-modality imaging of atherosclerosis characteristics in mice using profilin-1 targeted magnetic nanoparticles. Theranostics 68:272–286CrossRefGoogle Scholar
  29. Wen S, Liu D, Cui Y, Harris SS, Chen Y, Li KC, Ju S, Teng G (2014) In vivo MRI detection of carotid atherosclerotic lesions and kidney inflammation in ApoE-deficient mice by using LOX-1 targeted iron nanoparticles. Nanomedicine 10:639–649CrossRefGoogle Scholar
  30. Winther MP, Van Dijk KW, Havekes LM, Hofker MH (2000) Macrophage scavenger receptor class A: a multifunctional receptor in atherosclerosis. Arterioscler Thromb Vasc Biol 20:290–297CrossRefGoogle Scholar
  31. Wu M, Zhang Y, Zhang Y, Wu M, Wu M, Wu H, Cao L, Li L, Li X, Zhang X (2018b) Tumor angiogenesis targeting and imaging using gold nanoparticle probe with directly conjugated cyclic NGR. RSC Adv 8:1706–1716CrossRefGoogle Scholar
  32. Wu T, Chen X, Wang Y, Xiao H, Peng Y, Lin L, Xia W, Long M, Tao J, Shuai X (2018a) Aortic plaque-targeted andrographolide delivery with oxidation-sensitive micelle effectively treats atherosclerosis via simultaneous ROS capture and anti-inflammation. Nanomedicine 14:2215–2226CrossRefGoogle Scholar
  33. Yan F, Sun Y, Mao Y, Wu M, Deng Z, Li S, Liu X, Xue L, Zheng H (2018) Ultrasound molecular imaging of atherosclerosis for early diagnosis and therapeutic evaluation through leucocyte-like multiple targeted microbubbles. Theranostics 8:1879–1891CrossRefGoogle Scholar
  34. Yang W, Guo W, Le W, Lv G, Zhang F, Shi L, Wang X, Wang J, Wang S, Chang J, Zhang B (2016) Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano 10:10245–10257CrossRefGoogle Scholar
  35. Yu M, Zhou C, Liu L, Zhang S, Sun S, Hankins JD, Sun X, Zheng J (2017) Interactions of renal-clearable gold nanoparticles with tumor microenvironments: vasculature and acidity effects. Angew Chem Int Ed 56:4314–4319CrossRefGoogle Scholar
  36. Zhang S, Zou L, Zhang D, Pang X, Yang H, Xu Y (2011) GoldMag nanoparticles with core/shell structure: characterization and application in MR molecular imaging. J Nanopart Res 13:3867–3876CrossRefGoogle Scholar
  37. Zhang X, Wu D, Shen X, Liu P, Fan F, Fan S (2012) In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33:4628–4638CrossRefGoogle Scholar
  38. Zhao Y, Peng J, Li J, Huang L, Yang J, Huang K, Li H, Jiang N, Zheng S, Zhang X, Niu Y, Han G (2017) Tumor-targeted and clearable human protein-based MRI nanoprobes. Nano Lett 8:28Google Scholar
  39. Zhou Z, Qutaish M, Han Z, Schur RM, Liu Y, Wilson DL, Lu Z (2015) MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nat Commun 6:7984CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of RadiologyThe Second Hospital of Tianjin Medical UniversityTianjinPeople’s Republic of China
  2. 2.Department of Medical ImagingThe First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinPeople’s Republic of China
  3. 3.Department of UrologyThe Second Hospital of Tianjin Medical University, Sex Hormone Research Center, Tianjin Institute of UrologyTianjinPeople’s Republic of China
  4. 4.Department of UltrasonographyTianjin Medical University General HospitalTianjinPeople’s Republic of China

Personalised recommendations