Advertisement

Ordered mesoporous alumina with ultra-large pore size catalyze cinnamaldehyde to cinnamyl alcohol with high selectivity

  • Jianzheng Zhang
  • Xiaofei Xing
  • Jiaren Zhang
  • Junmei Chu
  • Zhenxing LiEmail author
  • Qiuyu ZhangEmail author
  • Rumin Wang
  • Songhua Wu
Research Paper
  • 51 Downloads

Abstract

At present, most of mesoporous alumina are synthesized by a soft template method with pore diameters of less than 10 nm, which tends to cause an amorphous structure and great limitations for the catalytic reaction. Therefore, we chose to use triblock copolymer as a template and self-assembly by solvent evaporation to synthesize an ultra-large mesoporous alumina without any pore expanding agents. The synthesized mesoporous alumina is used for the hydrogenation reaction of 4-methoxy cinnamaldehyde, and the mesoporous alumina exhibited high conversion and excellent selectivity. Compared with industrial synthesis of 4-methoxy cinnamyl alcohol, the reaction can be a complete conversion of 4-methoxy cinnamaldehyde to 4-methoxy cinnamyl alcohol without any by-products.

Keywords

Mesoporous alumina Ultra-large pore Cinnamaldehyde Cinnamyl alcohol High selectivity Synthesis method 

Notes

Funding information

This study is fundianclly supported by the Beijing Natural Science Foundation (2182061).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11051_2019_4682_MOESM1_ESM.docx (3.7 mb)
ESM 1 (DOCX 3741 kb)

References

  1. Araia M, Takahashia H, Shiraia M, Nishiyamaa Y, Ebina T (1999) Effects of preparation variables on the activity of alumina-supported platinum catalysts for liquid phase cinnamaldehyde hydrogenation. Appl Catal A 176:229–237CrossRefGoogle Scholar
  2. Boissiere C, Nicole L, Gervais C, Babonneau F, Antonietti M, Amenitsch H, Sanchez C, Grosso D (2006) Nanocrystalline mesoporous γ-alumina powders “upmc1 material” gathers thermal and chemical stability with high surface area. Chem Mater 18:5238–5243CrossRefGoogle Scholar
  3. Cavallaro G, Pierro P, Palumbo FS, Testa F, Pasqua L, Aiello R (2014) Drug delivery devices based on mesoporous silicate. Drug Delivery 11:41–45CrossRefGoogle Scholar
  4. Gérardin C, Reboul J, Bonne M, Lebeau B (2013) Ecodesign of ordered mesoporous silica materials. Chem Soc Rev 42:4217–4255CrossRefGoogle Scholar
  5. Hajek J, Kumar N, Maki-Arvelaa P (2003) Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde. Appl Catal 251:385–396CrossRefGoogle Scholar
  6. Han YJ, Stuchy GD, Butler A (1999) Mesoporous silicate sequestration and release of proteins. J Am Chem Soc 121:9897–9898CrossRefGoogle Scholar
  7. Han XX, Zhou RX, Yue BH (2006) Selective hydrogenation of cinnamaldehyde over Pt/ZrO2 catalyst modified by Cr, Mn, Fe, Co and Ni. Catalysis Letters 109:157–168CrossRefGoogle Scholar
  8. Kresge CT, Leonowiez ME, Roth WJ, Vartoll JC, Beek JS (1992) Ordered mesophorous-sieves synthesized by a liquid crystal template mechanism. Nature 3:710–712CrossRefGoogle Scholar
  9. Kuemmel M, Grosso D, Boissiere C, Smarsly B, Brezesinski T, Albouy PA, Amenitsch H, Sanchez C (2005) Thermally stable nanocrystalline gamma-alumina layers with highly ordered 3D mesoporosity. Angew Chem Int Ed 44:4589–4592CrossRefGoogle Scholar
  10. Li Y, Li ZG, Zhou RX (2008) Bimetallic Pt-Co catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol: Preparation and characterization. J Mol Catal A 279:140–146CrossRefGoogle Scholar
  11. Li W, Liu J, Zhao DY (2016) Mesoporous materials for energy conversion and storage devices. Nat Mater 1:16023CrossRefGoogle Scholar
  12. Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, Garcia-Martinez J (2014) Mesoporous materials for clean energy technologies. Chem Soc Rev 43:7681–7717CrossRefGoogle Scholar
  13. Liu Q, Wang A, Wang X, Zhang T (2006) Ordered crystalline alumina molecular sieves synthesized via a nanocasting route. Chem Mater 18:5153–5155CrossRefGoogle Scholar
  14. Lopez OS, Inayat A, Schwab A, Selvam T, Schwieger W (2011) Zeolitic materials with hierarchical porous structures. Adv Mater 23:2502–2507Google Scholar
  15. Lu AH, Schüth F (2006) Nanocasting: A versatile strategy for creating nanostructured porous materials. Adv. Mater 18:1793–1805CrossRefGoogle Scholar
  16. Ma HX, Wang LC, Chen LY (2007) Pt nanoparticles deposited over carbon nanotubes for selective hydrogenation of cinnamaldehyde. Catal Commun 8:452–456CrossRefGoogle Scholar
  17. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041CrossRefGoogle Scholar
  18. Niesz K, Yang P, Somorjai GA (2005) Sol-gel synthesis of ordered mesoporous alumina. Chem Commun 15:1986–1987CrossRefGoogle Scholar
  19. Pal N, Bhaumik A (2013) The surface-properties of phospholipid liposome systems and their characterization. Adv Colloid Interface Sci 21:189–190Google Scholar
  20. Perego C, Millini R (2013) Porous materials in catalysis: challenges for mesoporous materials. Chem Soc Rev 42:3956–3976CrossRefGoogle Scholar
  21. Plomp AJ, VanAsten DMP, VanDer Eerden AMJ (2009) Catalysts based on platinum-tin and platinum-gallium in close contact for the selective hydrogenation of cinnamaldehyde. J Catal 263:146–154CrossRefGoogle Scholar
  22. Poltarzewski Z, Galvagno S, Pietropaolo R (1986) Hydrogenation of α, β-unsaturated aldehydes over PtSn/Nylon. J Catal 102:190–198CrossRefGoogle Scholar
  23. Ramırez JP, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530–2542CrossRefGoogle Scholar
  24. Ramos-Fernandez EV, Ferreira AFP, Sepulveda-Escfi-Bano A (2008) Enhancing the catalytic performance of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support. J Catal 258:52–60CrossRefGoogle Scholar
  25. Raxnos-Fernandez EV, Ferreira AFP (2008) Enhancing the catalytic performance of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support. J Catal 258:52–60CrossRefGoogle Scholar
  26. Stucky GD, Yang P, Zhao D, Margolese DI, Chmelka BF (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396:152–155CrossRefGoogle Scholar
  27. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534CrossRefGoogle Scholar
  28. Tsung CK, Fan J, Zheng N, Shi Q, Forman AJ, Wang J, Stucky GD (2008) A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks. Angew Chem Int Ed 47:8682–8686CrossRefGoogle Scholar
  29. Valange S, Derouault A, Pronier S, Barrault J, Gabelica Z (2005) Highly selective binary Cu-Al mesoporous phases for the hydrogenation of cinnamaldehyde into cinnamyl alcohol: evaluation of the synthesis parameters required for optimized catalytic performances. Stud Surf Sci Catal 158:1557–1564CrossRefGoogle Scholar
  30. Valkenberg MH, Holderich WF (2002) Preparation and use of hybrid organicâinorganic catalysts. Catal Rev 44:321–374CrossRefGoogle Scholar
  31. Vallet RM, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558CrossRefGoogle Scholar
  32. Vinu A, Murugesan V, Tangermann O, Hartmann M (2004) Adsorption of cytochromecon mesoporous molecular sieves: influence of PH, pore diameter, and aluminum incorporation. Chem Mater 16:3056–3065CrossRefGoogle Scholar
  33. Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42:4036–4044CrossRefGoogle Scholar
  34. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42:4098–4140CrossRefGoogle Scholar
  35. Wang ZR, Zhu YH, Luo W, Ren Y, Cheng XW, Xu PC, Li XX, Deng YH, Zhao DY (2016) Controlled synthesis of ordered mesoporous carbon-cobalt oxide nanocomposites with large mesopores and graphitic walls. Chem Mater 28:7773–7780CrossRefGoogle Scholar
  36. Wei J, Ren Y, Luo W, Zhao DY (2017) Ordered mesoporous alumina with ultra-large pores as an efficient absorbent for selective bioenrichment. Chem Mater 29:2211–2217CrossRefGoogle Scholar
  37. Wu Z, Li Q, Feng D, Webley PA, Zhao DY (2010) Ordered mesoporous crystalline gamma-Al2O3 with variable architecture and porosity from a single hard template. J Am Chem Soc 132:12042–12050CrossRefGoogle Scholar
  38. Ye Y, Jo C, Jeong I, Lee J (2013) Functional mesoporous materials for energy applications: solar cells, fuel cells and batteries. Nanoscale 5:4584–4605CrossRefGoogle Scholar
  39. Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH (2008) Facile synthesis for ordered mesoporous gamma-aluminas with high thermal stability. J Am Chem Soc 130:3465–3472CrossRefGoogle Scholar
  40. Zhang Z, Pinnavaia TJ (2002) Mesostructured gamma-Al2O3 with a lathlike framework morphology. J Am Chem Soc 124:12294–12301CrossRefGoogle Scholar
  41. Zhang YK, Liao SJ, Xu Y (2000) Catalytic selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Appl Catal A 192:247–251CrossRefGoogle Scholar
  42. Zhou Z, Hartmann H (2013) Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem Soc Rev 42:3894–3912CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.AECC Beijing Institute of Aeronautical MaterialsBeijingChina
  2. 2.Department of Applied Chemistry, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  3. 3.Key Laboratory of Heavy Oil Processing, College of New Energy and Materials,China University of Petroleum (Beijing)BeijingChina
  4. 4.PetroChina Petrochemical Research InstituteBeijingChina

Personalised recommendations