Advertisement

Quantum conductance of defected phosphorene and germanene nanoribbons

  • Nasim Rahmani Ivriq
  • Amirhossein Ahmadkhan KordbachehEmail author
  • Mojtaba Kargar Kheirabadi
Research Paper
  • 32 Downloads

Abstract

The electronic and transport properties of the monolayer black phosphorus and germanene nanoribbons are studied in the framework of the tight-binding model (TBM) based upon Landauer-Büttiker formalism using Green’s function method (GFM). The local density of states (LDOS) and electronic conductance of the phosphorene and germanene nanoribbons along zigzag and armchair directions are examined when the various types of defects are introduced into the system. It is found that the transport properties of zigzag phosphorene and germanene nanoribbons are strongly dependent on the number and location of the vacancies. Furthermore, it is shown that the one-/three-atom vacancy induces quasi-states in the conductance around the Fermi energy because of breaking the sublattice symmetry in the zigzag germanene nanoribbons (ZGeNRs). So the metal-semiconductor transition occurs when one-/three-atom vacancy is located at the edges of ZGeNRs; however, this transition is not observed in the zigzag phosphorene nanoribbons (ZPNRs). Besides, the results of the calculations indicate more sensitivity of ZPNRs on conductivity to the edge vacancy disorders than armchair phosphorene nanoribbons (APNRs). In addition, the conductance of ZPNRs decreases with the increment of the ribbon width in the presence of edge vacancy. Importantly, the disappearance of conductance around Fermi energy in ZPNR due to Anderson localization disorder highlights an important conclusion for the possibility of quenching of the conductance near the Fermi energy, making this class of materials appealing for applications in digital transistor devices.

Keywords

Tight binding model Two-dimensional nanomaterials Single-atom vacancy Weak scatter defect Anderson localization disorder Metal-semiconductor transition 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abrahams E (ed) (2010) 50 years of Anderson Localization. World Scientific Publishing Co. Pte. Ltd., University of California, Los AngelesGoogle Scholar
  2. Aftab T (2017) Valleytronics and phase transition in silicene. Phys Lett A 381:935–943.  https://doi.org/10.1016/j.physleta.2017.01.020 CrossRefGoogle Scholar
  3. Aure’lien L, Biel B, Yann-Michel Niquet SR (2008) Transport length scales in disordered graphene-based materials: strong localization regimes and dimensionality effects. Phys Rev Lett 036803:1–4.  https://doi.org/10.1103/PhysRevLett.100.036803 CrossRefGoogle Scholar
  4. Bagheri S, Mansouri N, Aghaie E (2016) Phosphorene: a new competitor for graphene. Int J Hydrog Energy 41:4085–4095.  https://doi.org/10.1016/j.ijhydene.2016.01.034 CrossRefGoogle Scholar
  5. Bianco E, Butler S, Jiang S, Restrepo OD, Windl W, Goldberger JE (2013) Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7:4414–4421.  https://doi.org/10.1021/nn4009406 CrossRefGoogle Scholar
  6. Buscema M, Groenendijk DJ, Steele GA, van der Zant HSJ, Castellanos-Gomez A (2014) Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat Commun 5:1–6.  https://doi.org/10.1038/ncomms5651 CrossRefGoogle Scholar
  7. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926.  https://doi.org/10.1021/nn400280c CrossRefGoogle Scholar
  8. Cai Y, Zhang G, Zhang YW (2014) Layer-dependent band alignment and work function of few-layer phosphorene. Sci Rep 4:1–6.  https://doi.org/10.1038/srep06677 CrossRefGoogle Scholar
  9. Coello-Fiallos D, Tene T, Guayllas JL, Haro D, Haro A, Vacacela Gomez C (2017) DFT comparison of structural and electronic properties of graphene and germanene: monolayer and bilayer systems. Mater Today Proc 4:6835–6841.  https://doi.org/10.1016/j.matpr.2017.07.011 CrossRefGoogle Scholar
  10. Cresti A, Nemec N, Biel B, Niebler G, Triozon F, Cuniberti G, Roche S (2008) Charge transport in disordered graphene-based low dimensional materials. Nano Res 1:361–394.  https://doi.org/10.1007/s12274-008-8043-2 CrossRefGoogle Scholar
  11. Dai J, Zeng XC (2014) Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J Phys Chem Lett 5:1289–1293.  https://doi.org/10.1021/jz500409m CrossRefGoogle Scholar
  12. Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A (2014) Tunable transport gap in phosphorene. Nano Lett 14:5733–5739.  https://doi.org/10.1021/nl5025535 CrossRefGoogle Scholar
  13. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Datta S (2005) Quantum transport : atom to transistor. Cambridge University Press, New YorkCrossRefGoogle Scholar
  15. Dávila ME, Xian L, Cahangirov S, Rubio A, le Lay G (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:095002.  https://doi.org/10.1088/1367-2630/16/9/095002 CrossRefGoogle Scholar
  16. Duan X, Wang C, Pan A, Yu R, Duan X (2015) Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev 44:8859–8876.  https://doi.org/10.1039/C5CS00507H CrossRefGoogle Scholar
  17. Ezawa M (2012) A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J Phys 14:033003.  https://doi.org/10.1088/1367-2630/14/3/033003 CrossRefGoogle Scholar
  18. Ezawa M (2014a) Electrically tunable quasi-flat bands, conductance and field effect transistor in phosphorene. New J Phys 1404:5788.  https://doi.org/10.1088/1367-2630/16/11/115004 CrossRefGoogle Scholar
  19. Ezawa M (2014b) Topological origin of quasi-flat edge band in phosphorene. New J Phys 16:115004.  https://doi.org/10.1088/1367-2630/16/11/115004 CrossRefGoogle Scholar
  20. Fisher DS, Lee PA (1981) Relation between conductivity and transmission matrix. Phys Rev B 23:6851–6854.  https://doi.org/10.1103/PhysRevB.23.6851 CrossRefGoogle Scholar
  21. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425.  https://doi.org/10.1038/nature12385 CrossRefGoogle Scholar
  22. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191.  https://doi.org/10.1038/nmat1849 CrossRefGoogle Scholar
  23. Gorjizadeh N, Kawazoe Y, Farajian AA (2011) Electronic and transport properties of defected graphene nanoribbons. In: Mikhailov S (ed) Physics and applications of graphene: theory. InTech, pp 417–432Google Scholar
  24. Guan XM, Zhang M, Zhang HY, Luo YH (2014) Opening band gap of graphene by chemical doping: a first principles study. Chin J Struct Chem 33:513–518Google Scholar
  25. Guo H, Lu N, Dai J, Wu X, Zeng XC (2014) Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J Phys Chem C 118:14051–14059.  https://doi.org/10.1021/jp505257g CrossRefGoogle Scholar
  26. H L, Neal AT, Zhu Z et al (2014) Phosphorene : an unexplored 2D semiconductor with a high hole. ACS Nano 8:4033–4041.  https://doi.org/10.1021/nn501226z CrossRefGoogle Scholar
  27. Han X, Morgan Stewart H, Shevlin SA et al (2014) Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett 14:4607–4614.  https://doi.org/10.1021/nl501658d CrossRefGoogle Scholar
  28. Hongxia Z, Ruge Q, Yangyang W et al (2015) Silicene on substrates:a theoretical perspective. Chin Phys B 24:087308.  https://doi.org/10.1088/1674-1056/24/8/087308 CrossRefGoogle Scholar
  29. Hussain T, Kaewmaraya T, Chakraborty S, Vovusha H, Amornkitbamrung V, Ahuja R (2018) Defected and functionalized germanene-based nanosensors under sulfur comprising gas exposure. ACS Sensors 3:867–874.  https://doi.org/10.1021/acssensors.8b00167 CrossRefGoogle Scholar
  30. Imry Y (1986) Active transmission channels and universal conductance fluctuations. EPL (Europhys Lett) 1:249–256.  https://doi.org/10.1209/0295-5075/1/5/008 CrossRefGoogle Scholar
  31. Kou L, Frauenheim T, Chen C (2014) Phosphorene as a superior gas sensor: selective adsorption and distinct I − V response. J Phys Chem Lett 5:2675–2681.  https://doi.org/10.1021/jz501188k CrossRefGoogle Scholar
  32. Krompiewski S, Martinek J, Barnaś J (2002) Interference effects in electronic transport through metallic single-wall carbon nanotubes. Phys Rev B 66:073412.  https://doi.org/10.1103/PhysRevB.66.073412 CrossRefGoogle Scholar
  33. Kukucska G, Zólyomi V, Koltai J (2019) Resonance Raman spectroscopy of silicene and germanene. J Phys Chem C 123:1995–2008.  https://doi.org/10.1021/acs.jpcc.8b11943 CrossRefGoogle Scholar
  34. Li TC, Lu SP (2008) Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B Condens Matter Mater Phys 77:1–8.  https://doi.org/10.1103/PhysRevB.77.085408 CrossRefGoogle Scholar
  35. Li LL, Peeters FM (2018) Quantum transport in defective phosphorene nanoribbons: effects of atomic vacancies. Phys Rev B 97:1–10.  https://doi.org/10.1103/PhysRevB.97.075414 CrossRefGoogle Scholar
  36. Li T, Shi QW, Wang X, Chen Q, Hou J, Chen J (2005) Effects of dangling ends on the conductance of side-contacted carbon nanotubes. Phys Rev B Condens Matter Mater Phys 72:3–6.  https://doi.org/10.1103/PhysRevB.72.035422 CrossRefGoogle Scholar
  37. Li L, Lu SZ, Pan J, Qin Z, Wang YQ, Wang Y, Cao GY, du S, Gao HJ (2014a) Buckled germanene formation on Pt(111). Adv Mater 26:4820–4824.  https://doi.org/10.1002/adma.201400909 CrossRefGoogle Scholar
  38. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014b) Black phosphorus field-effect transistors. Nat Nano 9:372–377.  https://doi.org/10.1038/nnano.2014.35 CrossRefGoogle Scholar
  39. Li W, Yang Y, Zhang G, Zhang Y (2015a) Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett 15:1691–1697.  https://doi.org/10.1021/nl504336h CrossRefGoogle Scholar
  40. Li XB, Guo P, Cao TF, Liu H, Lau WM, Liu LM (2015b) Structures, stabilities, and electronic properties of defects in monolayer black phosphorus. Sci Rep 5:1–11.  https://doi.org/10.1038/srep10848 CrossRefGoogle Scholar
  41. Li L, Kim J, Jin C, Ye GJ, Qiu DY, da Jornada FH, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie SG, Chen XH, Zhang Y, Wang F (2017) Direct observation of the layer-dependent electronic structure in phosphorene. Nat Nanotechnol 12:21–25.  https://doi.org/10.1038/nnano.2016.171 CrossRefGoogle Scholar
  42. Lou J, Xu X, Ye PD (2014) Black phosphorus - monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 8:8292–8299.  https://doi.org/10.1021/nn5027388 CrossRefGoogle Scholar
  43. Masih Das P, Danda G, Cupo A, Parkin WM, Liang L, Kharche N, Ling X, Huang S, Dresselhaus MS, Meunier V, Drndić M (2016) Controlled sculpture of black phosphorus nanoribbons. ACS Nano 10:5687–5695.  https://doi.org/10.1021/acsnano.6b02435 CrossRefGoogle Scholar
  44. Meir Y, Wingreen NS (1992) Landauer formula for the current through an interacting electron region Yigal. Phys Rev Lett 68:2512–2515.  https://doi.org/10.1103/PhysRevLett.68.2512 CrossRefGoogle Scholar
  45. Monshi MM, Aghaei SM, Calizo I (2017a) Edge functionalized germanene nanoribbons: impact on electronic and magnetic properties. RSC Adv 7:18900–18908.  https://doi.org/10.1039/c6ra25083a CrossRefGoogle Scholar
  46. Monshi MM, Aghaei SM, Calizo I (2017b) Doping and defect-induced germanene: a superior media for sensing H2S, SO2and CO2gas molecules. Surf Sci 665:96–102.  https://doi.org/10.1016/j.susc.2017.08.012 CrossRefGoogle Scholar
  47. Nardelli MB (1999) Electronic transport in extended systems: application to carbon nanotubes. Phys Rev B Condens Matter Mater Phys 60:7828–7833.  https://doi.org/10.1103/PhysRevB.60.7828 CrossRefGoogle Scholar
  48. Narjes Gorjizadeh AF a YK (2008) The effects of defects on the conductance of graphene nanoribbons. Nanothechnology 20:015201.  https://doi.org/10.1088/0957-4484/20/1/015201 CrossRefGoogle Scholar
  49. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669.  https://doi.org/10.1126/science.1102896 CrossRefGoogle Scholar
  50. Novoselov KS, Fal VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200.  https://doi.org/10.1038/nature11458 CrossRefGoogle Scholar
  51. Padilha JE, Pontes RB (2016) Electronic and transport properties of structural defects in monolayer germanene: an ab initio investigation. Solid State Commun 225:38–43.  https://doi.org/10.1016/j.ssc.2015.10.019 CrossRefGoogle Scholar
  52. Peng X, Copple A, Wei Q (2014) Edge effects on the electronic properties of phosphorene nanoribbons. J Appl Phys 116:144301.  https://doi.org/10.1063/1.4897461 CrossRefGoogle Scholar
  53. Roche S, Leconte N, Ortmann F et al (2012) Quantum transport in disordered graphene: a theoretical perspective. Solid State Commun 152:1404–1410.  https://doi.org/10.1016/j.ssc.2012.04.030 CrossRefGoogle Scholar
  54. Rudenko AN, Katsnelson MI (2014) Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys Rev B 201408:1–5.  https://doi.org/10.1103/PhysRevB.89.201408 CrossRefGoogle Scholar
  55. Sancho MPL, Sancho JML, Rubio J (1984) Quick iterative scheme for the calculation of transfer matrices : application to MO (100). J Phys F Metal Phys 14:1205–1215.  https://doi.org/10.1088/0305-4608/14/5/016 CrossRefGoogle Scholar
  56. Tahir M, Zhang QY, Schwingenschlögl U (2016) Floquet edge states in germanene nanoribbons. Sci Rep 6:1–6.  https://doi.org/10.1038/srep31821 CrossRefGoogle Scholar
  57. Tan C, Huang X, Zhang H (2013) Synthesis and applications of graphene-based noble metal nanostructures. Mater Today 16:29–36.  https://doi.org/10.1016/j.mattod.2013.01.021 CrossRefGoogle Scholar
  58. Tran V, Soklaski R, Liang Y, Yang L (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89:235319.  https://doi.org/10.1103/PhysRevB.89.235319 CrossRefGoogle Scholar
  59. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012a) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712.  https://doi.org/10.1038/nnano.2012.193 CrossRefGoogle Scholar
  60. Wang Y, Zheng J, Ni Z, Fei R, Liu Q, Quhe R, Xu C, Zhou J, Gao Z, Lu J (2012b) Half-metallic silicene and germanene nanoribbons: towards high-performance spintronics device. Nano 07:1250037.  https://doi.org/10.1142/S1793292012500373 CrossRefGoogle Scholar
  61. Wei H, Yang J (2015) Defects in phosphorene. J Phys Chem C 119:20474–20480.  https://doi.org/10.1021/acs.jpcc.5b06077 CrossRefGoogle Scholar
  62. Wu Q, Shen L, Yang M, Cai Y, Huang Z, Feng YP (2015) Electronic and transport properties of phosphorene nanoribbons. Phys Rev B Condens Matter Mater Phys 92:1–9.  https://doi.org/10.1103/PhysRevB.92.035436 CrossRefGoogle Scholar
  63. Xia F, Wang H, Jia Y (2014a) Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun 5:4458.  https://doi.org/10.1038/ncomms5458 CrossRefGoogle Scholar
  64. Xia W, Hu W, Li Z, Yang J (2014b) A first-principles study of gas adsorption on germanene. Phys Chem Chem Phys 16:22495–22498.  https://doi.org/10.1039/c4cp03292f CrossRefGoogle Scholar
  65. Ye M, Quhe R, Zheng J, Ni Z, Wang Y, Yuan Y, Tse G, Shi J, Gao Z, Lu J (2014) Tunable band gap in germanene by surface adsorption. Phys E Low Dimensional Syst Nanostruct 59:60–65.  https://doi.org/10.1016/j.physe.2013.12.016 CrossRefGoogle Scholar
  66. Zhao J, Liu H, Yu Z et al (2012) Graphene: an emerging electronic material. Nature 490:1–11.  https://doi.org/10.1038/nature11458 CrossRefGoogle Scholar
  67. Zhao S, Kang W, Xue J (2014) The potential application of phosphorene as an anode material in Li-ion batteries. J Mater Chem A 2:19046–19052.  https://doi.org/10.1039/C4TA04368E CrossRefGoogle Scholar
  68. Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu CC, Zhong H, Han N, Lu J, Yao Y, Wu K (2016) Progress in materials science rise of silicene : a competitive 2D material. Prog Mater Sci 83:24–151.  https://doi.org/10.1016/j.pmatsci.2016.04.001 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Nasim Rahmani Ivriq
    • 1
  • Amirhossein Ahmadkhan Kordbacheh
    • 1
    Email author
  • Mojtaba Kargar Kheirabadi
    • 1
  1. 1.Materials Simulation Laboratory, Department of PhysicsIran University of Science and TechnologyTehranIran

Personalised recommendations